Next Article in Journal
Using HJ-Biplot and External Logistic Biplot as Machine Learning Methods for Corporate Social Responsibility Practices for Sustainable Development
Previous Article in Journal
ZPiE: Zero-Knowledge Proofs in Embedded Systems
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On a Coupled System of Stochastic Ito^-Differential and the Arbitrary (Fractional) Order Differential Equations with Nonlocal Random and Stochastic Integral Conditions

by
A. M. A. El-Sayed
and
Hoda A. Fouad
*,†
Faculty of Science, Alexandria University, Alexandria 21568, Egypt
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Mathematics 2021, 9(20), 2571; https://doi.org/10.3390/math9202571
Submission received: 2 September 2021 / Revised: 26 September 2021 / Accepted: 11 October 2021 / Published: 14 October 2021

Abstract

:
The fractional stochastic differential equations had many applications in interpreting many events and phenomena of life, and the nonlocal conditions describe numerous problems in physics and finance. Here, we are concerned with the combination between the three senses of derivatives, the stochastic It o ^ -differential and the fractional and integer orders derivative for the second order stochastic process in two nonlocal problems of a coupled system of two random and stochastic differential equations with two nonlocal stochastic and random integral conditions and a coupled system of two stochastic and random integral conditions. We study the existence of mean square continuous solutions of these two nonlocal problems by using the Schauder fixed point theorem. We discuss the sufficient conditions and the continuous dependence for the unique solution.

1. Introduction

The existence and uniqueness of solutions to stochastic differential equations driven by Brownian motion have been studied by many authors (see [1,2,3] ).
Also the non-local coupled system was studied by some authors (see for example [4,5,6,7,8] and references therein).
The results are important since they cover non-local generalizations of fractional stochastic differential equations (FSDE), more applications are arising in fields such as heat conduction, electromagnetic theory and dynamic system (see for example [9,10]).
Many authors have been interested to study the fractional stochastic differential equations see [11,12,13,14] and investigate their results all the time.
Let ( Ω , G , μ ) be a probability space see [15].
The motive of this work is to generalize the scope results of A.M.A. El-Sayed [16,17] on the stochastic fractional operators and the solution of non-local coupled systems of stochastic differential equations see [7,16].
Also, we study the existence of solutions of a coupled system of It o ^ -differential equation and arbitrary (fractional)orders random differential equation subject to two coupled systems of non-local random and stochastic integral conditions. The effect of random functions and data which ensures the continuous dependence of the solution has been proved.
Let I = [ 0 , T ] and X ( t ; ω ) = X ( t ) , t I , ω Ω be such that E ( X 2 ( t ) ) < , t I .
Let C = C ( I , L 2 ( Ω ) ) be the class of all mean square (m.s) continuous stochastic processes on I with norm
X C = sup t I X ( t ) 2 , X ( t ) 2 = ( E X 2 ( t ) ) 1 / 2 .
Definition 1.
Let X C ( I , L 2 ( Ω ) ) and μ , ν ( 0 , 1 ] . The stochastic integral operator of order ν is defined by
I ν X ( t ) = 0 t ( t s ) ν 1 Γ ( ν ) X ( s ) d s
and the stochastic fractional order derivative is defined by
D μ X ( t ) = I 1 μ d X d t .
For the properties of stochastic fractional calculus see [16].
Let α , β ( 0 , 1 ] and T 1 . Here we prove the existence of solutions X , Y C ( [ 0 , T ] , L 2 ( Ω ) ) of the two nonlocal fractional coupled system of the two It o ^ -deferential and arbitrary orders, differential equations
d X ( t ) d t = g 1 ( t , Y ( ϕ ( t ) ) ) , t ( 0 , T ]
and
d Y ( t ) = g 2 ( t , D α X ( t ) ) ) d W ( t ) , t ( 0 , T ]
with the stochastic and random integral conditions
X ( 0 ) + 0 τ h 1 ( s , D β X ( s ) ) d W ( s ) = X o , Y ( 0 ) + 0 η h 2 ( s , Y ( s ) ) d s = Y o
and the coupled system of the two stochastic and random non-local integral conditions
X ( 0 ) + 0 τ h 1 ( s , Y ( s ) ) d W ( s ) = X o , Y ( 0 ) + 0 η h 2 ( s , X ( s ) ) d s = Y o
where X o and Y o are two second order random variables.
The existence of solutions X , Y C ( I , L 2 ( Ω ) ) of the problems (1)–(3) and (1)–(2) and (4) are proved. The continuous dependence of the unique solutions X , Y C ( I , L 2 ( Ω ) ) on X o and Y o , h 1 and h 2 and the solution Y C ( I , L 2 ( Ω ) ) on D α X ( t ) will be studied.

2. Integral Representations of the Solution

Consider the following assumptions:
( a 1 )  
ϕ : I I , ϕ ( t ) t is a continuous on I.
( a 2 )  
g i : I × L 2 ( Ω ) L 2 ( Ω ) are (Caratheodory) measurable in t I , X L 2 ( Ω ) and continuous in X L 2 ( Ω ) t I and there exist b i > 0 and two bounded measurable functions ξ i : I R such that
g i ( t , X ) 2 | ξ i ( t ) | + b i X ( t ) 2 , i = 1 , 2 .
( a 3 )  
h i : [ 0 , T ] × L 2 ( Ω ) L 2 ( Ω ) are Caratheodory. There exist c i > 0 and two bounded measurable functions σ i : I R such that
h i ( t , X ) 2 | σ i ( t ) | + c i X ( t ) 2 , i = 1 , 2 .
( a 4 )  
M = max { sup t I | ξ 1 ( t ) | , sup t I | ξ 2 ( t ) | } , b = max { b 1 , b 2 } .
( a 5 )  
K = max { sup t I | σ 1 ( t ) | , sup t I | σ 2 ( t ) | } , c = max { c 1 , c 2 } .
( a 6 )  
( b + c ) T + b 2 T 2 ( 2 α ) < 1 .
Now, operating by I 1 α on Equation (1), we obtain
D α X ( t ) ) = I 1 α d X d t = I 1 α g 1 ( t , Y ( ϕ ( t ) ) ) .
Let
u ( t ) = D α X ( t ) ,
then from (1)–(2) we obtain
u ( t ) = I 1 α g 1 ( t , Y ( ϕ ( t ) )
and
d Y ( t ) = g 2 ( t , u ( t ) ) d W ( t ) .
Then we have the following lemma
Lemma 1.
The solutions of the problems (1)–(3) and (1), (2) and (4) can be given by
X ( t ) = X 0 0 τ h 1 ( s , I 1 β g 1 ( s , Y ( ϕ ( s ) ) ) ) d W ( s ) + 0 t g 1 ( s , Y ( ϕ ( s ) ) ) d s ,
Y ( t ) = Y 0 0 η h 2 ( s , Y ( s ) ) d s + 0 t g 2 ( s , I 1 α g 1 ( s , Y ( ϕ ( s ) ) ) ) d W ( s )
and
X ( t ) = X o 0 τ h 1 ( s , Y ( s ) ) d W ( s ) + 0 t g 1 ( s , Y ( ϕ ( s ) ) ) d s ,
Y ( t ) = Y o 0 η h 2 ( s , X ( s ) ) d s + 0 t g 2 ( s , I 1 α g 1 ( s , Y ( ϕ ( s ) ) ) ) d W ( s ) ,
respectively.
Proof. 
Integrating the Equations (7) and (9) (see [12,13,14,15,16,17,18]) with substitution by (8) and using the non-local conditions (3) and (4) the equivalent between the problem (1)–(3) and the integral representation (10)–(11) and the problem (1), (2) and (4) and the integral representation (12)–(13) can be proved. □

3. Solutions of the Problem (1)–(3)

Theorem 1.
Let the assumptions ( a 1 ) ( a 6 ) be satisfied, then the problem (1)–(3) has at least one solution X , Y C .
Proof. 
Consider the set Q 1 such that
Q 1 = { Y ( t ) L 2 ( Ω ) : Y ( t ) 2 r 1 } C ( I , L 2 ( Ω ) )
and define the mapping F 1 where
F 1 Y ( t ) = Y o 0 η h 2 ( s , Y ( s ) ) d s + 0 t g 2 ( s , I 1 α g 1 ( s , Y ( ϕ ( s ) ) ) ) d W ( s ) .
Let Y Q 1 , then
F 1 Y ( t ) 2 Y o 2 + 0 η h 2 ( s , Y ( s ) ) d s 2 + 0 t g 2 ( s , I 1 α g 1 ( s , Y ( ϕ ( s ) ) ) ) d W ( s ) 2 Y o 2 + 0 η ( σ 2 ( s ) + c 2 Y C ) d s + 0 t ( ξ 2 ( s ) + b 2 I 1 α g 1 ( s , Y ( ϕ ( s ) ) ) ) 2 2 d s Y o 2 + ( K + c r 1 ) T + ( M + b T 1 α ( M + b r 1 ) ( 1 α ) Γ ( 1 α ) ) T Y o 2 + K T + M T + M b T 3 2 α Γ ( 2 α ) + ( c T + b 2 T 3 2 α Γ ( 2 α ) ) r 1 Y o 2 + ( K + M ) T + M b T 2 ( 2 α ) + ( c T + b 2 T 2 ( 2 α ) ) r 1 = r 1
where
r 1 = ( Y o 2 + ( K + M ) ) T + M b T 2 ( 2 α ) 1 c T b 2 T 2 ( 2 α ) ,
then F 1 : Q 1 Q 1 and the class { F 1 Y ( t ) } , t [ 0 , T ] is uniformly bounded on Q 1 .
Let t 1 , t 2 [ 0 , T ] such that | t 2 t 1 | < δ , then
F 1 Y ( t 1 ) F 1 Y ( t 2 ) 2 = 0 t 2 g 2 ( s , I 1 α g 1 ( s , Y ( ϕ ( s ) ) ) ) d W ( s ) 0 t 1 g 2 ( s , I 1 α g 1 ( s , Y ( ϕ ( s ) ) ) ) d W ( s ) 2 = t 1 t 2 g 2 ( s , I 1 α g 1 ( s , Y ( ϕ ( s ) ) ) ) d W ( s ) 2 t 1 t 2 g 2 ( s , I 1 α g 1 ( s , Y ( ϕ ( s ) ) ) ) 2 2 d s ( M + b ( T 1 α ( M + b Y c ) Γ ( 2 α ) ) ) t 2 t 1 .
This proves the equicontinuity of the class { F 1 Y ( t ) } , t [ 0 , T ] on Q 1 .
Let Y n Q 1 , Y n Y w . p . 1 , we get (see [15])
L . i . m n F 1 Y n = L . i . m n ( Y o 0 η h 2 ( s , Y n ( s ) ) d s + 0 t g 2 ( s , I 1 α g 1 ( s , Y n ( ϕ ( s ) ) ) ) d W ( s ) ) = Y o 0 η h 2 ( s , L . i . m n Y n ( s ) ) d s + 0 t g 2 ( s , I 1 α g 1 ( s , L . i . m n Y n ( ϕ ( s ) ) ) ) d W ( s ) = Y o 0 η h 2 ( s , Y ( s ) ) d s + 0 t g 2 ( s , I 1 α g 1 ( s , Y ( ϕ ( s ) ) ) ) d W ( s ) = F 1 Y .
This proves that the operator F 1 : Q 1 Q 1 is continuous. Consequently, the closure of { F 1 Q 1 } is compact and (see [15]) and integral Equation (11) has a solution Y C ( [ 0 , T ] , L 2 ( Ω ) ) .
Let the set Q 2 be such that
Q 2 = { X ( t ) L 2 ( Ω ) : X ( t ) 2 r 2 } C ( [ 0 , T ] , L 2 ( Ω ) )
and define the mapping F 2 X such that
F 2 X ( t ) = X o 0 τ h 1 ( s , I 1 β g 1 ( s , Y ( ϕ ( s ) ) ) ) d W ( s ) + 0 t g 1 ( s , Y ( ϕ ( s ) ) ) d s .
Let X Q 2 , then
F 2 X ( t ) 2 X o 2 + 0 τ h 1 ( s , I 1 β g 1 ( s , Y ( ϕ ( s ) ) ) ) d W ( s ) 2 2 d s + 0 t g 1 ( s , Y ( ϕ ( s ) ) ) 2 d s X o 2 + 0 τ ( | σ 1 ( s ) | + c 1 I 1 β g 1 ( s , Y ( ϕ ( s ) ) ) 2 ) 2 d s + 0 t ( | ξ 1 ( s ) | + b 1 Y C ) d s X o 2 + ( K + c T 1 β ( M + b r 1 ) Γ ( 2 α ) ) T + ( M + b r 1 ) T X o 2 + ( K + M ) T + c M T 3 2 β Γ ( 2 α ) + ( c b T 3 2 β Γ ( 2 α ) + b T ) r 1 X o 2 + ( K + M ) T + M c T 2 ( 2 β ) + ( b T + b c T 2 ( 2 β ) ) r 1 = r 2
where
r 2 = X 0 2 + ( K + M ) T + M c T 2 ( 2 β ) + ( b T + b c T 2 ( 2 β ) ) r 1 ,
then the class { F 2 X ( t ) } , t [ 0 , T ] is uniformly bounded.
Let X Q 2 ; t 1 , t 2 [ 0 , T ] , then
F 2 X ( t 2 ) F 2 X ( t 1 ) 2 = t 1 t 2 g 1 ( s , Y ( ϕ ( s ) ) ) d s 2 ( M + b r 1 ) ( t 2 t 1 ) ,
then the class { F 2 X ( t ) } , t [ 0 , T ] is equicontinuous.
Let X n Q 2 be such that X n Y w . p . 1 .
Using Theorem 1, we get
L . i . m n F 2 X n = L . i . m n ( X o 0 τ h 1 ( s , I 1 β g 1 ( s , Y n ( ϕ ( s ) ) ) ) d W ( s ) + 0 t g 1 ( s , Y n ( ϕ ( s ) ) ) d s ) = X o 0 τ h 1 ( s , L . i . m n I 1 β g 1 ( s , Y n ( ϕ ( s ) ) ) ) d W ( s ) + 0 t g 1 ( s , L . i . m n Y n ( ϕ ( s ) ) ) d s = X o 0 τ h 1 ( s , , I 1 β g 1 ( s , Y ( ϕ ( s ) ) ) ) d W ( s ) + 0 t g 1 ( s , Y ( ϕ ( s ) ) ) d s = F 2 X .
Applying Schauder Fixed Point Theorem [15], (10) has a solution X C ( I , L 2 ( Ω ) ) .

3.1. Uniqueness Theorem

To discuss the uniqueness of the solution Y of (11) consider the assumptions ( a * 1 ) ( a * 2 ) instead of ( a 1 ) ( a 2 )   such that
( a * 1 )
g i : I × L 2 ( Ω ) L 2 ( Ω ) ; i = 1 , 2 are Caratheodory and satisfy second argument Lipschitz condition
g i ( t , u ( t ) ) g i ( t , v ( t ) ) 2 b u ( t ) v ( t ) 2 .  
( a * 2 )
h i : I × L 2 ( Ω ) L 2 ( Ω ) ; i = 1 , 2 Caratheodory and satisfy second argument Lipschitz condition
h i ( t , u ( t ) ) h i ( t , v ( t ) ) 2 c u ( t ) v ( t ) 2 .
It is clear that the assumptions ( a * 1 ) ( a * 2 ) imply the assumptions ( a 1 ) ( a 2 ) .
Theorem 2.
Let ( a * 1 ) ( a * 2 ) and ( a 3 ) ( a 6 ) be satisfied, then the solution of (1)–(3) is unique.
Proof. 
Let Y 1 and Y 2 be two solutions of (11), then
Y 1 ( t ) Y 2 ( t ) 2 0 η h 2 ( s , Y 2 ( s ) ) h 2 ( s , Y 1 ( s ) ) 2 d s + 0 t g 2 ( s , I 1 α g 1 ( s , Y 1 ( ϕ ( s ) ) ) ) g 2 ( s , I 1 α g 1 ( s , Y 2 ( ϕ ( s ) ) ) ) 2 2 d s c T Y 1 Y 2 C + b 2 T 3 2 α Γ ( 2 α ) Y 1 Y 2 C ( c T + b 2 T 2 ( 2 α ) ) Y 1 Y 2 C .
and
( 1 c T b 2 T 2 ( 2 α ) ) Y 1 Y 2 C 0 .
Using ( a 6 ) we can get
Y 1 Y 2 C = 0 ,
then the solution of (11) is unique. Consequently, the solution of (10) is unique. □
Combining the results, then we deduce that the solution X , Y C of the problem the problem (1)–(3) is unique.

3.2. Continuous Dependence

Theorem 3.
The unique solution of the problem (1)–(3) depends continuously on X o , Y o .
Proof. 
Let X ^ , Y ^ be the solution of
X ^ ( t ) = X ^ o 0 τ h 1 ( s , I 1 β g 1 ( s , Y ^ ( ϕ ( s ) ) ) ) d W ( s ) + 0 t g 1 ( s , Y ^ ( ϕ ( s ) ) ) d s , Y ^ ( t ) = Y ^ o 0 η h 2 ( s , Y ^ ( s ) ) d s + 0 t g 2 ( s , I 1 α g 1 ( s , Y ^ ( ϕ ( s ) ) ) ) d W ( s ) .
Let
X o X ^ o 2 δ and Y o Y ^ o 2 δ ,
then
Y Y ^ C Y o Y ^ o 2 + c Y Y ^ C T + b 2 T 3 2 α Γ ( 2 α ) ) Y Y ^ C Y o Y ^ o 2 + ( c T + b 2 T 2 ( 2 α ) ) Y Y ^ C ,
( 1 c T b 2 T 2 ( 2 α ) ) Y Y ^ C Y 0 Y ^ 0 2
and
Y Y ^ C δ 1 c T b 2 T 2 ( 2 α ) = ϵ .
In the same way, we have
X X ^ C X o X ^ o 2 + [ c T 1 β b Y Y ^ C Γ ( 2 β ) ] T + b T Y Y ^ C ,
X X ^ C X o X ^ o 2 + [ c b T 2 ( 2 β ) + b T ] Y Y ^ 2
and
X X ^ C δ { 1 + c b T 2 ( 2 β ) + b T 1 c T b 2 T 2 ( 2 α ) } = ϵ .
Theorem 4.
The solution of (1)–(3) depends continuously on h 1 and h 2 .
Proof. 
Let X ^ , Y ^ be the solution of
X ^ ( t ) = X o 0 τ h 1 * ( s , I 1 β g 1 ( s , Y ^ ( ϕ ( s ) ) ) ) d W ( s ) + 0 t g 1 ( s , Y ^ ( ϕ ( s ) ) ) d s , Y ^ ( t ) = Y o 0 η h 2 * ( s , Y ^ ( s ) ) d s + 0 t g 2 ( s , I 1 α g 1 ( s , Y ^ ( ϕ ( s ) ) ) ) d W ( s ) ,
If h j * ( s , . ) h ( s , . ) 2 δ 1 , j = 1 , 2 then
Y ( t ) Y ^ ( t ) 2 = 0 η [ h 2 * ( s , Y ^ ( s ) ) h 2 ( s , Y ( s ) ) ] d s + 0 t [ g 2 ( s , I 1 α g 1 ( s , Y ( ϕ ( s ) ) ) ) g 2 ( s , I 1 α g 1 ( s , Y ^ ( ϕ ( s ) ) ) ) ] d W ( s ) 2 ( δ 1 + c Y Y ^ C ) T + b 2 T 3 2 α Γ ( 2 α ) Y Y ^ C δ 1 T + [ c T + b 2 T 2 ( 2 α ) ] Y Y ^ C
and
Y Y ^ C δ 1 T 1 c T b 2 T 2 ( 2 α )
and similarly we have
X ( t ) X ^ ( t ) 2 0 η [ h 1 * ( s , I 1 β g 1 ( s , Y ^ ( ϕ ( s ) ) ) ) h 1 ( s , I 1 β g 1 ( s , Y ( ϕ ( s ) ) ) ) ] d W ( s ) 2 + 0 t [ g 1 ( s , Y ( ϕ ( s ) ) ) ) g 1 ( s , Y ^ ( ϕ ( s ) ) ) ] d s 2 0 τ ( δ 1 + b c T 1 β Y Y ^ C Γ ( 2 β ) ) 2 d s + b T Y Y ^ C ( δ 1 + b c T 1 β Y Y ^ C Γ ( 2 β ) ) T + b T c δ 1 T + [ b c T 2 ( 2 β ) + b T ] Y Y ^ C
and
X X ^ C δ 1 T [ 1 + b c T 2 ( 2 β ) + b T 1 c T b 2 T 2 ( 2 α ) ] = ϵ .
From (18) and (19) the solution X , Y depends continuously on h 1 , h 2 .
Theorem 5.
The solution of (1)–(3) depends continuously on D α X ( t ) = u ( t ) .
Proof. 
Let X ^ , Y ^ be the solution of
X ^ ( t ) = X o 0 τ h 1 ( s , I α β u ^ ( s ) ) d W ( s ) + I α u ^ ( t ) , Y ^ ( t ) = Y o 0 η h 2 ( s , Y ^ ( s ) ) d s + 0 t g 2 ( s , u ^ ( s ) ) ) d W ( s )
such that u ( t ) ^ u ( t ) 2 δ 2 , then
X ( t ) X ^ ( t ) 2 0 η [ h 1 ( s , I α β u ^ ( s ) ) h 1 ( s , I α β u ( s ) ) ] d W ( s ) 2 + I α u ( t ) I α u ^ ( t ) 2 c T α β δ 2 T Γ ( α β + 1 ) + T α δ 2 Γ ( α + 1 )
and
X X ^ C T α δ 2 [ c T 1 2 β Γ ( α β + 1 ) + 1 Γ ( α + 1 ) ] = ϵ .
By the same way
Y ( t ) Y ^ ( t ) 2 0 η [ h 2 ( s , Y ^ ( s ) ) h 2 ( s , Y ( s ) ) ] d s 2 + 0 t [ g 2 ( s , u ( s ) ) g 2 ( s , u ^ ( s ) ) ] d W ( s ) 2 c T Y Y ^ C ) + b T δ 2 = ϵ .
Now
Y Y ^ C b T δ 2 ( 1 c T ) = ϵ
which is complete the proof. □

4. Solutions of the Problem (1)–(2) and (4)

Let Λ = C ( I , L 2 ( Ω ) ) × C ( I , L 2 ( Ω ) ) be the set of ordered pairs ( X , Y ) , X , Y C and
( X , Y ) Λ = X C + Y C .
Define the mapping P ( X , Y ) = ( P 1 Y , P 2 X ) where P 1 Y , P 2 X are given by
P 1 Y ( t ) = X 0 0 τ h 1 ( s , Y ( s ) ) d W ( s ) + 0 t g 1 ( s , Y ( ϕ ( s ) ) ) d s ,
P 2 X ( t ) = Y 0 0 η h 2 ( s , X ( s ) ) d s + 0 t g 2 ( s , I 1 α g 1 ( s , Y ( ϕ ( s ) ) ) d W ( s ) .
Consider the set Q ,
Q = { ( X , Y ) L 2 ( Ω ) , ( X , Y ) Λ : ( X , Y ) Λ = X ( t ) 2 + Y ( t ) 2 } r } .

4.1. Existence Theorem

Theorem 6.
Let T 1 and ( a 1 ) ( a 6 ) be satisfied, then (1)–(2) and (4) has a solution ( X , Y ) Λ .
Proof. 
Let ( X , Y ) Q , then we have
P 1 Y ( t ) 2 X 0 2 + 0 η h 1 ( s , Y ( s ) ) d W ( s ) 2 + 0 t g 1 ( s , Y ( ϕ ( s ) ) ) d s 2 X 0 2 + ( K + c Y C ) T + ( M + b Y C ) ) T X 0 2 + M T + K T + ( c T + b T ) Y C X 0 2 + ( M + K ) T + ( c + b ) T Y C ,
P 2 X ( t ) 2 Y 0 2 + 0 η h 2 ( s , X ( s ) ) d s 2 + 0 t g 2 ( s , I 1 α g 1 ( s , Y ( ϕ ( s ) ) ) ) d W ( s ) 2 Y 0 2 = 0 η h 2 ( s , X ( s ) ) 2 d s + 0 t g 2 ( s , I 1 α g 1 ( s , Y ( ϕ ( s ) ) ) ) 2 2 d s Y 0 2 + ( K + c X C ) T + ( M + b T 1 α Γ ( 2 α ) ( M + b Y C ) T Y 0 2 + K T + M T + b M T 3 2 α Γ ( 2 α ) + b 2 T 3 2 α Γ ( 2 α ) Y C + T c X C Y 0 2 + ( K + M ) T + M b T 2 ( 2 α ) + b 2 T 2 ( 2 α ) Y C + T c X C .
This implies that
P ( X , Y ) X = ( P 1 Y , P 2 X ) Λ = P 1 Y C + P 2 X C X 0 2 + Y 0 2 + 2 ( K + M ) T + M b T 2 ( 2 α ) + [ ( c + b ) T + b 2 T 2 ( 2 α ) ] { X C + Y C }
( X 0 , Y 0 ) Λ + 2 ( K + M ) T + M b T 2 ( 2 α ) + [ ( c + b ) T + b 2 T 2 ( 2 α ) ] ( X , Y ) Λ ( X 0 , Y 0 ) Λ + 2 ( K + M ) T + M b T 2 ( 2 α ) + [ ( c + b ) T + b 2 T 2 ( 2 α ) ] r = r
where
r = ( X 0 , Y 0 ) Λ + 2 ( K + M ) T + M b T 2 ( 2 α ) 1 c T b T b 2 T 2 ( 2 α ) ,
then the class { P ( X , Y ) ( t ) , t = [ 0 , T ] } is uniformly bounded and P ( x , y ) : Q Q .
Let ( X , Y ) Q , t 1 , t 2 [ 0 , T ] such that | t 2 t 1 | < δ , then
P 1 Y ( t 2 ) P 1 Y ( t 1 ) 2 = t 1 t 2 g 1 ( s , Y ( ϕ 1 ( s ) ) ) d s 2 ( M + b Y C ) ( t 2 t 1 ) , a n d
P 2 X ( t 2 ) P 2 X ( t 1 ) 2 = t 1 t 2 g 2 ( s , I 1 α g 1 ( s , Y ( ϕ ( s ) ) ) d W ( s ) 2 ( M + b I 1 α g 1 ( s , Y ( ϕ ( s ) ) ) 2 ) ( t 2 t 1 ) .
But
P ( X ( t 2 ) , Y ( t 2 ) ) P ( X ( t 1 ) , Y ( t 1 ) ) = ( P 1 Y ( t 2 ) , P 2 X ( t 2 ) ) ( P 1 Y ( t 1 ) , P 2 Y ( t 1 ) ) = ( ( P 1 Y ( t 2 ) P 1 Y ( t 1 ) ) , ( P 2 X ( t 2 ) P 2 X ( t 1 ) ) ) ,
then from (25) and (26), { P ( X , Y ) ( t ) } , t [ 0 , T ] is equicontinuous on Q .
Let ( X n , Y n ) ( X , Y ) w . p . 1 , { ( X n , Y n ) } Q then applying stochastic Lebesgue dominated convergence Theorem [15], we can obtain -5.0cm0cm
L . i . m n P ( X n , Y n ) = ( L . i . m n P 1 Y n , L . i . m n P 2 X n ) = ( L . i . m n { X 0 0 τ h 1 ( s , Y n ( s ) ) d W ( s ) + 0 t g 1 ( s , Y n ( ϕ ( s ) ) ) d s } , L . i . m n { Y 0 0 η h 2 ( s , X n ( s ) ) d s + 0 t g 2 ( s , I 1 α g 1 ( s , Y n ( ϕ ( s ) ) ) ) d W ( s ) } ) = ( X 0 0 τ h 1 ( s , L . i . m n Y n ( s ) ) d W ( s ) + 0 t g 1 ( s , L . i . m n Y n ( ϕ ( s ) ) ) ) d s , Y 0 0 η h 2 ( s , L . i . m n X n ( s ) ) d s + 0 t g 2 ( s , I 1 α g 1 ( s , L . i . m n Y n ( ϕ ( s ) ) ) d W ( s ) ) = ( X 0 0 τ h 1 ( s , Y ( s ) ) d W ( s ) + 0 t g 1 ( s , Y ( ϕ ( s ) ) ) d s , Y 0 0 η h 2 ( s , X ( s ) ) d s + 0 t g 2 ( s , I 1 α g 1 ( s , Y ( ϕ ( s ) ) ) ) d W ( s ) , ) = ( P 1 Y , P 2 X ) = P ( x , y ) .
This proves that P : Q Q is continuous.
Then the closure of P Q is compact and (see [15]) the problem (1)–(2) and (4) has a solution ( X , Y ) Λ , X , Y C ( I , L 2 ( Ω ) ) .

4.2. Uniqueness of the Solution

Theorem 7.
Let ( a * 1 ) ( a * 2 ) and ( a 3 ) ( a 6 ) are satisfied. Then the solution of (1)–(2) is unique.
Proof. 
Let ( X 1 , Y 1 ) and ( X 2 , Y 2 ) be the solution of
( x ( t ) , y ( t ) ) = ( X o 0 τ h 1 ( s , Y ( s ) ) d W ( s ) + 0 t g 1 ( s , Y ( ϕ ( s ) ) ) d s , Y o 0 η h 2 ( s , X ( s ) ) d s + 0 t g 2 ( s , I 1 α g 1 ( s , Y ( ϕ ( s ) ) ) ) d W ( s ) ) ,
then we can get
X 1 ( t ) X 2 ( t ) 2 c T Y 1 Y 2 C + b T Y 1 Y 2 C ( c T + b T ) Y 1 Y 2 C ( c + b ) T { X 1 X 2 C + Y 1 Y 2 C } .
Similarly, we can obtain
Y 1 ( t ) Y 2 ( t ) 2 c T X 1 X 2 C + b 2 T 3 2 α Γ ( 2 α ) y 1 y 2 C c T X 1 X 2 C + b 2 T 2 ( 2 α ) y 1 y 2 C ( c T + b 2 T 2 ( 2 α ) ) { X 1 X 2 C + Y 1 Y 2 C } .
Hence from (28) and (29)
( X 1 , Y 1 ) ( X 2 , Y 2 ) Λ = ( X 1 X 2 ) C + ( Y 1 Y 2 ) C ( ( b + c ) T + b 2 T 2 ( 2 α ) ) { X 1 X 2 C + Y 1 Y 2 C } ( ( b + c ) T + b 2 T 2 ( 2 α ) ) ( X 1 , Y 1 ) ( X 2 , Y 2 ) Λ .
This implies that
( 1 ( b + c ) T b 2 T 2 ( 2 α ) ) ( X 1 , Y 1 ) ( X 2 , Y 2 ) Λ 0 .
then
( X 1 , Y 1 ) ( X 2 , Y 2 ) Λ = 0
and ( X 1 , Y 1 ) = ( X 2 , Y 2 ) .

4.3. Continuous Dependence

Theorem 8.
The solution of the problem (1)–(2) and (4) is continuously dependent on ( X 0 , Y 0 ) .
Proof. 
Let ( X ^ , Y ^ ) be the solution of (1)–(2) and (4)
X ^ ( t ) = X ^ o 0 τ h 1 ( s , Y ^ ( s ) ) d W ( s ) + 0 t g 1 ( s , Y ^ ( ϕ ( s ) ) ) d s , Y ^ ( t ) = Y ^ o 0 η h 2 ( s , X ^ ( s ) ) d s + 0 t g 2 ( s , I 1 α g 1 ( s , Y ^ ( ϕ ( s ) ) ) ) d W ( s ) )
such that ( X o , Y o ) ( X o ^ , Y o ^ ) Λ < δ 3 . Then we have
X ( t ) X ^ ( t ) = X o X o ^ 0 τ [ h 1 ( s , Y ^ ( s ) ) h 1 ( s , Y ( s ) ) ] d W ( s ) + 0 t [ g 1 ( s , Y ( ϕ ( s ) ) ) g 1 ( s , Y ^ ( ϕ ( s ) ) ) ] d s
and
X ( t ) X ^ ( t ) 2 X 0 X 0 ^ C + c T Y Y ^ C + b T Y Y ^ C X 0 X 0 ^ 2 + ( b + c ) T { X X ^ C + Y Y ^ C } .
Similarly, we deduce that
Y ( t ) Y ^ ( t ) 2 Y 0 Y 0 ^ 2 + c T X X ^ C + b 2 T 2 ( 2 α ) Y Y ^ C } Y 0 Y 0 ^ 2 + ( c T + b 2 T 2 ( 2 α ) ) { X X ^ C + Y Y ^ C }
and
( X , Y ) ( X ^ , Y ^ ) Λ = ( X X ^ C + ( Y Y ^ C X 0 X 0 ^ 2 + Y 0 Y 0 ^ 2 + ( ( b + c ) T + b 2 T 2 ( 2 α ) ) { X X ^ C + Y Y ^ C } ( X 0 , Y 0 ) ( X 0 ^ , Y 0 ^ ) Λ + ( ( b + c ) T + b 2 T 2 ( 2 α ) ) ( X , Y ) ( X ^ , Y ^ ) Λ .
Hence,
( X , Y ) ( X ^ , Y ^ ) Λ δ 3 1 T ( b + c ) b 2 T 2 ( 2 α ) = ϵ .
Theorem 9.
The solution of (1)–(2) and (4) depends continuously on h 1 and h 2 .
Proof. 
Let ( X ^ , Y ^ ) be the solution of (1)–(2) and (4) such that
X ^ ( t ) = X 0 0 τ h 1 * ( s , Y ^ ( s ) ) d W ( s ) + 0 t g 1 ( s , Y ^ ( ϕ ( s ) ) ) d s , Y ^ ( t ) = Y 0 0 η h 2 * ( s , X ^ ( s ) ) d s + 0 t g 2 ( s , I 1 α g 1 ( s , Y ^ ( ϕ ( s ) ) ) ) d W ( s ) ) .
Let h i * ( t , u ( t ) ) h ( t , u ( t ) ) 2 δ 4 , i = 1 , 2 then -5.0cm0cm
X ( t ) X ^ ( t ) 2 = 0 τ [ h 1 * ( s , Y ^ ( s ) ) h 1 ( s , Y ( s ) ) ] d W ( s ) + 0 t [ g 1 ( s , Y ( ϕ ( s ) ) ) g 1 ( s , Y ^ ( ϕ ( s ) ) ) ] d s 2 0 τ h 1 * ( s , Y ^ ( s ) ) h 1 ( s , Y ( s ) ) 2 2 d s + 0 t g 1 ( s , Y ( ϕ ( s ) ) ) g 1 ( s , Y ^ ( ϕ ( s ) ) ) 2 d s 0 τ [ h 1 * ( s , Y ^ ( s ) ) h 1 * ( s , Y ( s ) ) 2 + h 1 * ( s , Y ( s ) ) h 1 ( s , Y ( s ) ) 2 ] 2 d s + 0 t g 1 ( s , Y ( ϕ ( s ) ) ) g 1 ( s , Y ^ ( ϕ ( s ) ) ) 2 d s 0 τ ( c Y ( s ) Y ^ ( s ) 2 + δ 4 ) 2 d s + 0 t b Y ( s ) Y ^ ( s ) 2 d s ( c + b ) T Y Y ^ C + δ 4 T .
Similarly we can get
Y Y ^ C c T X X ^ C + b 2 T 3 2 α Γ ( 2 α ) Y Y ^ C + δ 4 T c T X X ^ C + b 2 T 2 ( 2 α ) Y Y ^ C + δ 4 T
and
( X , Y ) ( X ^ , Y ^ ) Λ = ( X X ^ C + ( Y Y ^ C 2 δ 4 T + c T X X ^ C + ( c T + b T + b 2 T 2 ( 2 α ) Y Y ^ C 2 δ 4 T + [ ( b + c ) T + b 2 T 2 ( 2 α ) ] { Y Y ^ C + X X ^ C } 2 δ 4 T + [ ( b + c ) T + b 2 T 2 ( 2 α ) ] ( X , Y ) ( X ^ , Y ^ ) Λ .
This implies that
( X , Y ) ( X ^ , Y ^ ) Λ 2 δ 4 T 1 ( b + c ) T b 2 T 2 ( 2 α ) = ϵ
which completes the proof. □
Theorem 10.
The solution ( X , Y ) of (1)–(2) and (4) depends continuously on u ( t ) = D α X ( t ) , α ( 0 , 1 ] .
Proof. 
Let ( X ^ , Y ^ ) be the solution of
X ^ ( t ) = X o 0 τ h 1 ( s , Y ^ ( s ) ) d W ( s ) + I α u ^ ( t ) , Y ^ ( t ) = Y o 0 η h 2 ( s , X ^ ( s ) ) d s + 0 t g 2 ( s , u ^ ( s ) ) ) d W ( s )
such that u ( t ) ^ u ( t ) 2 δ 5 , then
( X , Y ) ( X ^ , Y ^ ) Λ = ( X X ^ C + ( Y Y ^ C 0 η [ h 1 ( s , Y ^ ( s ) ) h 1 ( s , Y ( s ) ) ] d W ( s ) 2 + I α u ( t ) I α u ^ ( t ) 2 + 0 η [ h 2 ( s , X ^ ( s ) ) h 2 ( s , X ( s ) ) ] d s 2 + 0 t [ g 2 ( s , u ( s ) ) g 2 ( s , u ^ ( s ) ) ] d W ( s ) 2 c T Y Y ^ C + T α δ 5 Γ ( α + 1 ) + c T X X ^ C + b T δ 5 ( T α Γ ( α + 1 ) + b T ) δ 5 + c T ( X , Y ) ( X ^ , Y ^ ) Λ .
Now
( X , Y ) ( X ^ , Y ^ ) Λ δ 5 1 c T ( T α Γ ( α + 1 ) + b T )
which completes the proof. □

5. Example

Consider the coupled system
d X d t ( t ) = 1 t 2 + Y ( t ) 30 ( 1 + Y ( t ) 2 ) , t ( 0 , 1 ] , d Y ( t ) = e t + D 1 2 X ( t ) 120 ( 1 + X ( t ) 2 ) d W ( t ) , t ( 0 , 1 ]
subject to
X 0 = 0 τ s X ( s ) 80 + s 2 d W ( s ) , Y 0 = 0 η Y ( s ) s + 36 d s
where
g 1 ( t , Y ( t ) ) 2 1 30 Y ( t ) 2 , g 2 ( t , X ( t ) ) 2 1 120 [ 1 + X ( t ) 2 ]
and
h 1 ( t , X ( t ) 2 X ( t ) 2 80 , h 2 ( t , Y ( t ) 2 Y ( t ) 2 6 .
Easily, the coupled system (31) with nonlocal integral conditions (32) satisfies all the assumptions (a1)–(a6) of Theorem 1. with b = 1 30 , c = 1 6 .

6. Conclusions

Here, we have combined between the three senses of derivatives, the stochastic Ito-differential and the fractional and integer orders derivatives for the second order stochastic process in two non-local problems of the coupled system of the two random and stochastic differential Equations (1) and (2) with the stochastic and random integral conditions (3) and the coupled system of the two stochastic and random nonlocal integral conditions (4) where X 0 and Y 0 are two second order random variables.
The existence of solutions X , Y C ( I , L 2 ( Ω ) ) of the problems (1)–(3) and (1)–(2) and (4) are proved. The unique solution and the sufficient conditions are discussed. The continuous dependence of the solution X , Y C ( I , L 2 ( Ω ) ) on the two random variables X 0 and Y 0 and on the two random functions h 1 and h 2 and the continuous dependence of the solution Y C ( I , L 2 ( Ω ) ) on the fractional order derivative D α X ( t ) are be studied. An example is given.

Author Contributions

Conceptualization, A.M.A.E.-S. and H.A.F. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

Authors are grateful to referees for their useful comments and remarks that helped to improve this work.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Soong, T.T. Random Differential Equations in Science and Engineering; Academic Press: New York, NY, USA, 1973. [Google Scholar]
  2. Tsokos, C.P.; Padgett, W.J. Stochastic integral equations in life science and engineering. Int. Stat. Rev. 1973, 412, 15–38. [Google Scholar] [CrossRef]
  3. Krylov, N.V. On Itô’s stochastic integral equations. Theory Probabil. Its Appl. 1967, 14, 330–336. [Google Scholar] [CrossRef]
  4. Adomian, G. Coupled nonlinear stochastic differential equations. J. Math. Anal. Appl. 1983, 92, 427–434. [Google Scholar] [CrossRef] [Green Version]
  5. Bougoffa, L. A class of second order differential equations with nonlocal boundary conditions. Appl. Math. Sci. 2007, 1, 1035–1039. [Google Scholar]
  6. El-Sayed, A.M.A.; Hashem, H.H.G. A coupled System of integral equations in reflexive Banach spaces. Acta Math. Sci. 2012, 32B, 2021–2028. [Google Scholar] [CrossRef]
  7. El-Sayed, A.M.A.; Gaafar, F.; El-Gendy, M. Continuous dependence of the solution of Ito stochastic differential equation with nonlocal conditions. Appl. Math. Sci. 2016, 10, 1971–1982. [Google Scholar] [CrossRef]
  8. El-Sayed, A.M.A.; Gaafar, F.; El-Gendy, M. Continuous dependence of the solution of random fractional-order differential equation with nonlocal condition. Fract. Diff. Calcul. 2017, 7, 135–149. [Google Scholar] [CrossRef] [Green Version]
  9. Bashir, A.; Sotiris, K.N.; Ahmed, A. On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions. Chaos Solitons Fractals 2016, 83, 224–234. [Google Scholar]
  10. Elborai, M.M.; Abdou, M.A.; Youssef, M.I. On some nonlocal perturbed random fractional integro-differential equations. Life Sci. J. 2013, 10, 1601–1609. [Google Scholar]
  11. Balasubramaniam, P.; Tamilalagan, P. The solvability and optimal controls for impulsive fractional stochastic integro-differential equations via resolvent Operators. J. Optim. Theory Appl. 2017, 174, 139–155. [Google Scholar] [CrossRef]
  12. Mohamed, I.Y. On the solvability of a general class of a coupled system of stochastic functional integral equations. Arab J. Basic Appl. Sci. 2020, 27, 142–148. [Google Scholar] [CrossRef] [Green Version]
  13. Watanabe, S.; Yamada, T. On uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ. 1971, 11, 553–563. [Google Scholar] [CrossRef]
  14. Hafez, F.M. The Fractional calculus for some stochastic processes. Stochastic Anal. Appl. 2004, 22, 507–523. [Google Scholar] [CrossRef]
  15. Curtain, R.F.; Pritchard, A.J. Functional Analysis in Modern Applied Mathematics; Cambride Press: Cambride, MA, USA, 1977. [Google Scholar]
  16. El-Sayed, A.M.A. On the stochastic fractional calculus operators. J. Fract. Calcul. Appl. 2015, 6, 101–109. [Google Scholar]
  17. El-Sayed, A.M.A.; Hoda, A.F. On a coupled system of random and stochastic nonlinear differential equations with coupled nonlocal random and stochastic nonlinear integral conditions. Mathematics 2021, 9, 2111. [Google Scholar] [CrossRef]
  18. Wong, E. Introduction to Random Processes; Springer: Berlin, Germany, 1980. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

El-Sayed, A.M.A.; Fouad, H.A. On a Coupled System of Stochastic Ito^-Differential and the Arbitrary (Fractional) Order Differential Equations with Nonlocal Random and Stochastic Integral Conditions. Mathematics 2021, 9, 2571. https://doi.org/10.3390/math9202571

AMA Style

El-Sayed AMA, Fouad HA. On a Coupled System of Stochastic Ito^-Differential and the Arbitrary (Fractional) Order Differential Equations with Nonlocal Random and Stochastic Integral Conditions. Mathematics. 2021; 9(20):2571. https://doi.org/10.3390/math9202571

Chicago/Turabian Style

El-Sayed, A. M. A., and Hoda A. Fouad. 2021. "On a Coupled System of Stochastic Ito^-Differential and the Arbitrary (Fractional) Order Differential Equations with Nonlocal Random and Stochastic Integral Conditions" Mathematics 9, no. 20: 2571. https://doi.org/10.3390/math9202571

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop