Modelling Oil Price with Lie Algebras and Long Short-Term Memory Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preliminaries on Orthogonal Matrix Lie Groups and Algebras
2.2. Stochastic Dynamics on Orthogonal Matrix Lie Groups
2.2.1. The Lie Group
2.2.2. The Lie Group
3. Data and Some Descriptive Statistics
4. Models and Results
- Input samples consist of sequence segments of 30 timesteps, each having 1 feature (price).
- Input layer is connected to an LSTM unit with 25 hidden neurons and a dropout value of 0.20.
- LSTM output feeds a dense layer (output) with one neuron and linear activation function
- Training is performed in batches of 32 samples.
4.1. In-Sample Forecast Results
4.2. Out-of-Sample Forecast Results
4.3. Test for Forecast Accuracy
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barone-Adesi, G.; Bourgoin, F.; Giannopoulos, K. Don’t look back. Risk 1998, 11, 100–103. [Google Scholar]
- Adrangi, B.; Chatrath, A.; Dhanda, K.K.; Raffiee, K. Chaos in oil prices? Evidence from futures markets. Energy Econ. 2001, 23, 405–425. [Google Scholar] [CrossRef] [Green Version]
- Lahmiri, S. A study on chaos in crude oil markets before and after 2008 international financial crisis. Phys. A Stat. Mech. Its Appl. 2017, 466, 389–395. [Google Scholar] [CrossRef]
- Bildirici, M.E.; Sonustun, F.O. Chaotic Structure of Oil Prices, Inflation and Unemployment. Nonlinear Dyn. Psychol. Life Sci. 2019, 23, 377–394. [Google Scholar]
- Komijani, A.; Naderi, E.; Gandali Alikhani, N. A hybrid approach for forecasting of oil prices volatility. OPEC Energy Rev. 2014, 38, 323–340. [Google Scholar] [CrossRef] [Green Version]
- He, L.-Y. Chaotic Structures in Brent & WTI Crude Oil Markets: Empirical Evidence. Int. J. Econ. Financ. 2011, 3, 242–249. [Google Scholar] [CrossRef] [Green Version]
- Bildirici, M.; Guler Bayazit, N.; Ucan, Y. Analyzing Crude Oil Prices under the Impact of COVID-19 by Using LSTARGARCHLSTM. Energies 2020, 13, 2980. [Google Scholar] [CrossRef]
- Gibson, R.; Schwartz, E. Valuation of Long Term Oil-Linked Assets; Working Paper; Anderson Graduate School of Management, University of California: Los Angeles, CA, USA, 1989; Volume 6, p. 89. [Google Scholar]
- Gibson, R.; Schwartz, E.S. Stochastic convenience yield and the pricing of oil contingent claims. J. Financ. 1990, 45, 959–976. [Google Scholar] [CrossRef]
- Nunes, J.; Webber, N.J. Low Dimensional Dynamics and the Stability of HJM Term Structure Models; Working Paper; AIP Publishing: Melville, NY, USA, 1997. [Google Scholar]
- Gazizov, R.K.; Ibragimov, N.H. Lie symmetry analysis of differential equations in finance. Nonlinear Dyn. 1998, 17, 387–407. [Google Scholar] [CrossRef]
- Ibragimov, N.H.; Soh, C.W. Solution of the Cauchy problem for the Black-Scholes equation using its symmetries. In Proceedings of the Modern Group Analysis, International Conference at the Sophus Lie Conference Center, Nordfjordeid, Norway, 9–13 June 1997. [Google Scholar]
- Lo, C.F.; Hui, C.H. Valuation of financial derivatives with time-dependent parameters: {Lie}-algebraic approach. Quant. Financ. 2001, 1, 73–78. [Google Scholar] [CrossRef]
- Carr, P.; Lipton, A.; Madan, D. The Reduction Method for Valuing Derivative Securities; Working Paper; New York University: New York, NY, USA, 2002. [Google Scholar]
- Park, F.C.; Chun, C.M.; Han, C.W.; Webber, N. Interest rate models on Lie groups. Quant. Financ. 2011, 11, 559–572. [Google Scholar] [CrossRef]
- Goard, J. New solutions to the bond-pricing equation via Lie’s classical method. Math. Comput. Model. 2000, 32, 299–313. [Google Scholar] [CrossRef]
- Klimyk, A.U.; Vilenkin, N.Y. Representations of Lie groups and special functions. In Representation Theory and Noncommutative Harmonic Analysis II; Springer: Berlin/Heidelberg, Germany, 1995; pp. 137–259. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Garcia, C.A. NonlinearTseries: Nonlinear Time Series Analysis; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Brock, W.; Dechert, W.D.; Scheinkman, J. A Test for Independence Based on the Correlation Dimension; Economy Working Paper SSRI-8702; University of Wisconsin: Madison, WI, USA, 1987. [Google Scholar]
Descriptive Statistic | |
---|---|
Kurtosis | 28.79 |
Skewness | 0.983 |
JB | 1180.97 |
Observations | 8884 |
Unit Root Test | |
ADF | −18.44 |
KSS | −9.65 |
Tests | X-Squared |
---|---|
Teraesvirta’s neural network test | 26.03616 |
White neural network test | 20.77706 |
Likelihood ratio test for threshold nonlinearity | 360.5499 |
F-statistics | |
Tsay’s test for nonlinearity | 7.94491 |
Dimension | z-Statistic |
---|---|
2 | 276.5526 |
3 | 297.6034 |
4 | 323.5149 |
5 | 360.5517 |
6 | 410.8878 |
Lie Methods | ||
---|---|---|
Lie-OLS | Lie-NLS | |
−0.319 (−5.18) | −0.321 (2.58) | |
−1.067 (3.16) | −0.321 (2.58) | |
0.256 (1.89) | 0.526 (4.80) | |
−0.3048 (1.73) | −0.3048 (−2.56) | |
0.474 (2.36) | −0.282 (14.96) | |
−0.616 (3.209) | 0.4616 (3.21) | |
−0.282 (2.64) | 0.4746 (1.97) | |
AIC | −11.89 | −11.65 |
R2 | 0.66 | 0.78 |
Log likelihood | 52.828 | 79.651 |
ARCH | 3.79 * | 2.45 |
BP | 9.48 * | 2.99 |
Keenan | 3.16 | 1.54 |
RESET | 3.81 * | 2.8 |
Traditional Lie Method | Lie Deep Method | |||
---|---|---|---|---|
LieOLS | LieNLS | Lie-LSTMOLS | Lie-LSTMNLS | |
MAE | 0.08300 | 0.1640 | 0.007676 | 0.002671 |
RMSE | 0.10223 | 0.2027 | 0.011423 | 0.006425 |
Traditional Lie Methods | ||||||
LieOLS | LieNLS | |||||
T+1 | T+10 | T+20 | T+1 | T+10 | T+20 | |
MAE | 0.0495 | 0.051 | 0.058 | 0.076 | 0.078 | 0.083 |
RMSE | 0.0633 | 0.066 | 0.069 | 0.088 | 0.092 | 0.095 |
Deep Neural Networks | ||||||
Lie-LSTMOLS | Lie-LSTMNLS | |||||
T+1 | T+10 | T+20 | T+1 | T+10 | T+20 | |
MAE | 0.014085 | 0.014168 | 0.014636 | 0.002710 | 0.002174 | 0.001601 |
RMSE | 0.028279 | 0.028653 | 0.029099 | 0.007710 | 0.008449 | 0.008548 |
LieOLS | LieNLS | Lie-LSTMOLS | Lie-LSTMNLS | |
---|---|---|---|---|
LieOLS | - | |||
LieNLS | 0.41 | - | ||
Lie-LSTMOLS | 0.00 | 0.00 | - | |
Lie-LSTMNLS | 0.00 | 0.00 | 0.00 | - |
LieOLS | LieNLS | Lie-LSTMOLS | Lie-LSTMNLS | |
---|---|---|---|---|
LieOLS | - | |||
LieNLS | 0.32 | - | ||
Lie-LSTMOLS | 0.00 | 0.00 | - | |
Lie-LSTMNLS | 0.00 | 0.00 | 0.00 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bildirici, M.; Bayazit, N.G.; Ucan, Y. Modelling Oil Price with Lie Algebras and Long Short-Term Memory Networks. Mathematics 2021, 9, 1708. https://doi.org/10.3390/math9141708
Bildirici M, Bayazit NG, Ucan Y. Modelling Oil Price with Lie Algebras and Long Short-Term Memory Networks. Mathematics. 2021; 9(14):1708. https://doi.org/10.3390/math9141708
Chicago/Turabian StyleBildirici, Melike, Nilgun Guler Bayazit, and Yasemen Ucan. 2021. "Modelling Oil Price with Lie Algebras and Long Short-Term Memory Networks" Mathematics 9, no. 14: 1708. https://doi.org/10.3390/math9141708
APA StyleBildirici, M., Bayazit, N. G., & Ucan, Y. (2021). Modelling Oil Price with Lie Algebras and Long Short-Term Memory Networks. Mathematics, 9(14), 1708. https://doi.org/10.3390/math9141708