On Fourier Coefficients of the Symmetric Square L-Function at Piatetski-Shapiro Prime Twins
Abstract
:1. Introduction
2. Auxiliary Lemmas
3. Proof of Theorem 2
4. Proof of Theorem 1
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deligne, P. La conjecture de Weil. I. Inst. Hautes Etudes Sci. Publ. Math. 1974, 43, 273–307. [Google Scholar] [CrossRef]
- Deligne, P. La conjecture de Weil. II. Inst. Hautes Etudes Sci. Publ. Math. 1980, 52, 137–252. [Google Scholar] [CrossRef]
- Chandrasekharan, K.; Narasimhan, R. Functional equations with multiple gamma factors and the average order of arithmetical functions. Ann. Math. 1962, 76, 93–136. [Google Scholar] [CrossRef]
- Davenport, H. On certain exponential sums. J. Reine Angew. Math. 1933, 169, 158–176. [Google Scholar]
- Hafner, J.L.; Ivić, A. On sums of Fourier coefficients of cusp forms. Enseign. Math. 1989, 35, 373–382. [Google Scholar]
- Hecke, E. Theorie der Eisensteinsche Reihen höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik. Abh. Math. Sem. Univ. Hamburg 1927, 5, 199–224. [Google Scholar] [CrossRef]
- Jiang, Y.J.; Lü, G.S.; Yan, X.F. Mean value theorem connected with Fourier coefficients of Hecke-Maass forms for SL(m,ℤ). Math. Proc. Camb. Philos. Soc. 2016, 161, 339–356. [Google Scholar] [CrossRef]
- Kloosterman, H.D. Asymptotische Formeln für die Fourier-koeffizienten ganzer Modulformen. In Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg; Springer: Berlin/Heidelberg, Germany, 1927; Volume 5, pp. 337–353. [Google Scholar]
- Lao, H.X. The cancellation of Fourier coefficients of cusp forms over different sparse sequences. Acta Math. Sin. (Engl. Ser.) 2013, 29, 1963–1972. [Google Scholar] [CrossRef]
- Lao, H.X. On comparing Hecke eigenvalues of cusp forms. Acta Math. Hungar. 2020, 160, 58–71. [Google Scholar] [CrossRef]
- Liu, H.F.; Li, S.; Zhang, D.Y. Power moments of automorphic L-function attached to Maass forms. Int. J. Number Theory 2016, 12, 427–443. [Google Scholar] [CrossRef]
- Liu, H.F.; Zhang, R. Some problems involving Hecke eigenvalues. Acta Math. Hungar. 2019, 159, 287–298. [Google Scholar] [CrossRef]
- Rankin, R.A. Sums of Cusp Form Coefficients; Automorphic forms and analytic number theory (Montreal, PQ, 1989); University Montreal: Montreal, QC, Canada, 1990; pp. 115–121. [Google Scholar]
- Saljé, H. Zur Abschätzung der Fourierkoeffizienten ganzer Modulformen. Math. Z. 1933, 36, 263–278. [Google Scholar]
- Song, P.; Zhai, W.G.; Zhang, D.Y. Power moments of Hecke eigenvalues for congruence group. J. Number Theory 2019, 198, 139–158. [Google Scholar] [CrossRef]
- Walfisz, A. Uber die Koeffizientensummen einiger Moduformen. Math. Ann. 1933, 108, 75–90. [Google Scholar] [CrossRef]
- Weil, A. On some exponential sums. Proc. Nat. Acad. Sci. USA 1948, 34, 204–207. [Google Scholar] [CrossRef] [Green Version]
- Wilton, J.R. A note on Ramanujans arithmetical function τ(n). Proc. Cambridge Philos. Soc. 1929, 25, 121–129. [Google Scholar] [CrossRef]
- Wu, J. Power sums of Hecke eigenvalues and applications. Acta Arith. 2009, 137, 333–344. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.Y.; Lau, Y.-K.; Wang, Y.N. Remark on the paper “On products of Fourier coefficients of cusp forms”. Arch. Math. (Basel) 2017, 108, 263–269. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Wang, Y.N. Higher-power moments of Fourier coefficients of holomorphic cusp forms for the congruence subgroup Γ0(N). Ramanujan J. 2018, 47, 685–700. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Wang, Y.N. Ternary quadratic form with prime variables attached to Fourier coefficients of primitive holomorphic cusp form. J. Number Theory 2017, 176, 211–225. [Google Scholar] [CrossRef]
- Iwaniec, H.; Kowalski, E. Analytic Number THeory; American Mathematical Society Colloquium Publications; American Mathematical Society: Providence, RI, USA, 2004; Volume 53. [Google Scholar]
- Baier, S.; Zhao, L.Y. On Hecke eigenvalues at Piatetski-Shapiro primes. J. Lond. Math. Soc. 2010, 81, 175–201. [Google Scholar] [CrossRef] [Green Version]
- Balog, A. On a variant of the Pjateckij-Šapiro prime number problem. In Groupe de Travail en Théorie Analytique et Élémentaire des Nombres, 1987–1988; Publ. Math. Orsay, 89-01; Université Paris-Saclay: Orsay, France, 1989; pp. 3–11. [Google Scholar]
- Dufner, G. Pjateckij-Shapiro prime twins. J. Number Theory 1993, 43, 370–378. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.Y.; Zhai, W.G. On the distribution of Hecke eigenvalues over Piatetski-Shapiro prime twins. Acta Math. Sin. (Engl. Ser.) 2021. [Google Scholar] [CrossRef]
- Fomenko, O.M. Identities Involving Coefficients of Automorphic L-Functions. J. Math. Sci. 2006, 133, 1749–1755. [Google Scholar] [CrossRef]
- Huang, J.; Liu, H.F.; Xu, F.X. Two-Dimensional Divisor Problems Related to Symmetric L-Functions. Symmetry 2021, 13, 359. [Google Scholar] [CrossRef]
- Ichihara, Y. Estimates of a certain sum involving coefficients of cusp forms in weight and level aspects. Lith. Math. J. 2008, 48, 188–202. [Google Scholar] [CrossRef]
- Jiang, Y.J.; Lü, G.S. Uniform estimates for sums of coefficients of symmetric square L-function. J. Number Theory 2015, 148, 220–234. [Google Scholar] [CrossRef]
- Lao, H.X. On the fourth moment of coefficients of symmetric square L-function. Chin. Ann. Math. Ser. B 2012, 33, 877–888. [Google Scholar] [CrossRef]
- Lü, G.S. Uniform estimates for sums of Fourier coefficients of cusp forms. Acta Math. Hungar. 2009, 124, 83–97. [Google Scholar] [CrossRef]
- Sankaranarayanan, A. On a sum involving Fourier coefficients of cusp forms. Lithuanian Math. J. 2006, 46, 459–474. [Google Scholar] [CrossRef]
- Tang, H.C. A note on the Fourier coefficients of Hecke Maass forms. J. Number Theory 2013, 133, 1156–1167. [Google Scholar] [CrossRef]
- Zhang, R.; Han, X.; Zhang, D.Y. Power moments of the Riesz mean error term of symmetric square L-function in short intervals. Symmetry 2020, 12, 2036. [Google Scholar] [CrossRef]
- Gallagher, P.X. A large sieve density estimate near σ = 1. Invent. Math. 1970, 11, 329–339. [Google Scholar] [CrossRef]
- Ye, Y.B.; Zhang, D.Y. Zero density for automorphic L-functions. J. Number Theory 2013, 133, 3877–3901. [Google Scholar] [CrossRef]
- Dong, L.L.; Liu, H.F.; Zhang, D.Y. Zero density estimates for automorphic L-functions of SL(2,ℤ). Acta Math. Hungar. 2016, 148, 191–210. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, X.; Yan, X.; Zhang, D. On Fourier Coefficients of the Symmetric Square L-Function at Piatetski-Shapiro Prime Twins. Mathematics 2021, 9, 1254. https://doi.org/10.3390/math9111254
Han X, Yan X, Zhang D. On Fourier Coefficients of the Symmetric Square L-Function at Piatetski-Shapiro Prime Twins. Mathematics. 2021; 9(11):1254. https://doi.org/10.3390/math9111254
Chicago/Turabian StyleHan, Xue, Xiaofei Yan, and Deyu Zhang. 2021. "On Fourier Coefficients of the Symmetric Square L-Function at Piatetski-Shapiro Prime Twins" Mathematics 9, no. 11: 1254. https://doi.org/10.3390/math9111254
APA StyleHan, X., Yan, X., & Zhang, D. (2021). On Fourier Coefficients of the Symmetric Square L-Function at Piatetski-Shapiro Prime Twins. Mathematics, 9(11), 1254. https://doi.org/10.3390/math9111254