Ulam Type Stability of -Quadratic Mappings in Fuzzy Modular ∗-Algebras
Abstract
:1. Introduction
2. Preliminaries
- (1)
- is commutative, associative;
- (2)
- ;
- (3)
- , whenever with .
- (FM1)
- ;
- (FM2)
- for all if and only if ;
- (FM3)
- (FM4)
- (FM5)
- the mapping is continuous at each fixed ;
- (FM4-1)
- (FM4)’
- for with ,
- (FM4-1)’
- for with .
- (1).
- is said to be μ-convergent to a point if for any ,
- (2).
- is called μ-Cauchy if for each and each , there exists such that, for all and all , we have
- (3).
- If each Cauchy sequence is convergent, then the fuzzy modular space is said to be complete.
3. Fuzzy Modular Stability for -Quadratic Mappings
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ulam, S.M. A Collection of the Mathematical Problems; Interscience Publishers: New York, NY, USA, 1960. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jun, K.-W.; Kim, H.-M. On the generalized A-quadratic mappings associated with the variance of a discrete-type distribution. Nonlinear Anal. Theory Methods Appl. 2005, 62, 975–987. [Google Scholar] [CrossRef]
- Choi, G.; Jung, S.-M. The Approximation Property of a One-Dimensional, Time Independent Schrödinger Equation with a Hyperbolic Potential Well. Mathematics 2020, 8, 1351. [Google Scholar] [CrossRef]
- Alanazi, A.M.; Muhiuddin, G.; Tamilvanan, K.; Alenze, E.N.; Ebaid, A.; Loganathan, K. Fuzzy Stability Results of Finite Variable Additive Functional Equation: Direct and Fixed Point Methods. Mathematics 2020, 8, 1050. [Google Scholar] [CrossRef]
- Park, C.G.; Rassias, J.M.; Bodaghi, A.; Kim, S.O. Approximate homomorphisms from ternary semigroups to modular spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2019, 113, 2175–2188. [Google Scholar] [CrossRef]
- Saha, P.; Samanta, T.K.; Mondal, P.; Choudhury, B.S.; De La Sen, M. Applying Fixed Point Techniques to Stability Problems in Intuitionistic Fuzzy Banach Spaces. Mathematics 2020, 8, 974. [Google Scholar] [CrossRef]
- EL-Fassi, I. Solution and approximation of radical quintic functional equation related to quintic mapping in quasi-β-Banach spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2019, 113, 675–687. [Google Scholar] [CrossRef]
- Liu, K.; Fečkan, M.; Wang, J. A Fixed-Point Approach to the Hyers–Ulam Stability of Caputo–Fabrizio Fractional Differential Equations. Mathematics 2020, 8, 647. [Google Scholar] [CrossRef] [Green Version]
- Eskandani, G.Z.; Rassias, J.M. Stability of general A-cubic functional equations in modular spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2018, 112, 425–435. [Google Scholar] [CrossRef]
- Kim, H.-M.; Shin, H.-Y. Approximate Lie ∗-derivations on ρ-complete convex modular algebras. J. Appl. Anal. Comput. 2019, 9, 765–776. [Google Scholar] [CrossRef] [Green Version]
- Nourouzi, K. Probabilistic modular spaces. In Proceedings of the 6th International ISAAC Congress, Ankara, Turkey, 13–18 August 2007. [Google Scholar]
- Nourouzi, K. Baire’s theorem in probabilistic modular spaces. In Proceedings of the World Congress on Engineering (WCE ’08), London, UK, 2–4 July 2008; Volume 2, pp. 916–917. [Google Scholar]
- Fallahi, K.; Nourouzi, K. Probabilistic modular spaces and linear operators. Acta Appl. Math. 2009, 105, 123–140. [Google Scholar] [CrossRef]
- Shen, Y.; Chen, W. On fuzzy modular spaces. J. Appl. Math. 2013, 2013, 576237. [Google Scholar] [CrossRef]
- George, A.; Veeramani, P. On some results in fuzzy metric spaces. Fuzzy Sets Syst. 2009, 64, 395–399. [Google Scholar] [CrossRef] [Green Version]
- Khamsi, M.A.; Kozłowski, W.M.; Reich, S. Fixed point theory in modular function spaces. Nonlinear Anal. Theory Methods Appl. 1990, 14, 935–953. [Google Scholar] [CrossRef] [Green Version]
- Wongkum, K.; Kumam, P. The stability of sextic functional equation in fuzzy modular spaces. J. Nonlinear Sci. Appl. 2016, 9, 3555–3569. [Google Scholar] [CrossRef] [Green Version]
- Klement, P.; Mesiar, R. Triangular norms. Tatra Mt. Math. Publ. 1997, 13, 169–193. [Google Scholar]
- Sadeqi, I.; Amiripour, A. Fuzzy Banach algebras. In Proceedings of the First, Joint Congress on Fuzzy and Intelligent Systems, Ferdorwski University of Mashhad, Mashhad, Iran, 29–31 August 2007. [Google Scholar]
- Dinda, B.; Samanta, T.K.; Bera, U.K. Intuitionistic fuzzy Banach algebra. Bull. Math. Anal. Appl. 2010, 3, 273–281. [Google Scholar]
- Kim, H.-M.; Shin, H.-Y. Approximate cubic Lie derivations on ρ-complete convex modular algebras. J. Funct. Spaces 2018, 2018, 3613178. [Google Scholar] [CrossRef] [Green Version]
- Baker, J.A. A general functional equation and its stability. Proc. Am. Math. Soc. 2005, 133, 1657–1664. [Google Scholar] [CrossRef]
- Vukman, J. Some functional equations in Banach algebras and an application. Proc. Am. Math. Soc. 1987, 100, 133–136. [Google Scholar] [CrossRef]
- Czerwik, S. The stability of the quadratic functional equation. In Stability of Mappings of Hyers-Ulam Type; Rassias, T.M., Tabor, J., Eds.; Hadronic Press: Palm Harbor, FL, USA, 1994; pp. 81–91. [Google Scholar]
- Kadison, R.V.; Pedersen, G. Means and convex combinations of unitary operators. Math. Scand. 1985, 57, 249–266. [Google Scholar] [CrossRef] [Green Version]
- Jun, K.W.; Kim, H.M. On the Hyers-Ulam stability of a generalized quadratic and additive functional equations. Bull. Korean Math. Soc. 2005, 42, 133–148. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-M.; Shin, H.-Y.
Ulam Type Stability of
Kim H-M, Shin H-Y.
Ulam Type Stability of
Kim, Hark-Mahn, and Hwan-Yong Shin.
2020. "Ulam Type Stability of
Kim, H.-M., & Shin, H.-Y.
(2020). Ulam Type Stability of