Next Article in Journal
General Local Convergence Theorems about the Picard Iteration in Arbitrary Normed Fields with Applications to Super–Halley Method for Multiple Polynomial Zeros
Previous Article in Journal
MHD Radiative Blood Flow Embracing Gold Particles via a Slippery Sheet through an Erratic Heat Sink/Source
Previous Article in Special Issue
Strong Convergent Theorems Governed by Pseudo-Monotone Mappings
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Interpolative Reich–Rus–Ćirić and Hardy–Rogers Contraction on Quasi-Partial b-Metric Space and Related Fixed Point Results

by
Vishnu Narayan Mishra
1,†,
Luis Manuel Sánchez Ruiz
2,*,†,
Pragati Gautam
3,† and
Swapnil Verma
3,†
1
Department of Mathematics, Indira Gandhi National Tribal University, Lalpur, Amarkantak, Anuppur, Madhya Pradesh 484887, India
2
ETSID-Departamento de Matematica Aplicada & CITG, Universitat Politecnica de Valencia, E-46022 Valencia, Spain
3
Department of Mathematics, Kamala Nehru College (University of Delhi), August Kranti Marg, New Delhi 110049, India
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Mathematics 2020, 8(9), 1598; https://doi.org/10.3390/math8091598
Submission received: 30 July 2020 / Revised: 13 September 2020 / Accepted: 13 September 2020 / Published: 17 September 2020
(This article belongs to the Special Issue Variational Inequality)

Abstract

:
The aim of this paper was to obtain common fixed point results by using an interpolative contraction condition given by Karapinar in the setting of complete metric space. Here in this paper, we have redefined the Reich–Rus–Ćirić type contraction and Hardy–Rogers type contraction in the framework of quasi-partial b-metric space and proved the corresponding common fixed point theorem by adopting the notion of interpolation. The results are further validated with the application based on them.

1. Introduction

In the year 1922, Banach [1] introduced one of the most prominent results called Banach contraction principle and its existence in metric fixed point theory i.e., Let J be a self map on a non-empty set X and d is a complete metric. If there exists a constant κ [ 0 , 1 ) such that
d ( J μ , J η ) κ d ( μ , η ) for all μ , η X ,
then it possesses a unique fixed point in X. Due to the importance and application potential of the Banach contraction principle, this notion has been extended by several authors [2,3,4]. In 1994, Matthews [5] introduced the notion of partial-metric space as a part of the study of denotational semantics of dataflow networks. In 1968, the following contraction was proved by Kannan [6] i.e.,
d ( J μ , J η ) ρ [ d ( μ , J μ ) + d ( η , J η ) ] for all μ , η X ,
where ρ 0 , 1 2 . In 2018, Karapinar [7] adopted the interpolative approach to define the generalized Kannan-type contraction on a complete metric space. We recall that a self-map J : X X is said to be an interpolative Kannan type contraction for a metric space ( X , d ) , if there are constants ρ [ 0 , 1 ) and α ( 0 , 1 ) such that
d ( J μ , J η ) ρ [ d ( μ , J μ ) ] α · [ d ( η , J η ) ] 1 α for all μ , η X \ Fix ( J )
where Fix ( J ) = { z X : J z = z } .
In 1972, Reich [8] generalized the concepts of Kannan and Banach, e.g., a self map J : X X is called a Reich-contraction mapping if there are α , β , γ [ 0 , 1 ) and α + β + γ < 1 such that
d ( J μ , J η ) α d ( μ , J μ ) + β d ( η , J η ) + γ d ( μ , η ) for all μ , η X .
Reich–Rus–Ćirić [9,10,11,12,13,14,15] independently proved the next theorem and its variants i.e., a self map J : X X is said to be a Reich–Rus–Ćirić contraction map on a complete metric space ( X , d ) if there are ρ 0 , 1 3 such that
d ( J μ , J η ) ρ [ d ( μ , η ) + d ( μ , J μ ) + d ( η , J η ) ] ,
for all μ , η X , then J possesses a unique fixed point. Very recently, Karapinar et al. [16,17] introduced the concept of interpolative Reich–Rus–Ćirić and Hardy–Rogers type contraction and proved the following fixed point results.
Theorem 1
([16]). In the notion of partial metric space ( X , d ) , if a mapping J : X X is an interpolative Reich–Rus–Ćirić type contraction, i.e., there are constants ρ [ 0 , 1 ) and α , β ( 0 , 1 ) such that d ( J μ , J η ) ρ [ d ( μ , η ) ] β [ d ( μ , J μ ) ] α · [ d ( η , J η ) ] 1 α β for all μ , η X \ Fix ( J ) , then J owns a fixed point.
Theorem 2
([17]). Let ( X , d ) be a metric space. If the self-mapping J : X X is an interpolative Hardy–Rogers type contraction i.e., there exist ρ [ 0 , 1 ) and α , β , γ ( 0 , 1 ) with α + β + γ < 1 , such that
d ( J μ , J η ) ρ [ d ( μ , η ) ] β [ d ( μ , J μ ) ] α · d ( η , J η ) ] γ · 1 2 ( d ( μ , J η ) + d ( η , J μ ) ) 1 α β γ f o r a l l μ , η X \ Fix ( J ) ,
then J possesses a fixed point of X.
In continuation, interesting work was done by many authors [18,19,20,21,22,23,24,25,26,27] which enriched this field.
The purpose of this paper was to revisit the approach of interpolative Reich–Rus–Ćirić and Hardy–Rogers type contractions to attain a common fixed point for quasi-partial b-metric spaces. Some examples are given to illustrate the new approach.

2. Preliminaries and Definitions

Definition 1
([28]). A quasi-partial b-metric on a non-empty set X is a function q p b : X × X R + such that for some real number s 1 and all μ , η , ϑ X :
(QPb1)
q p b ( μ , μ ) = q p b ( μ , η ) = q p b ( η , η ) implies μ = η ,
(QPb2)
q p b ( μ , μ ) q p b ( μ , η ) ,
(QPb3)
q p b ( μ , μ ) q p b ( η , μ ) ,
(QPb4)
q p b ( μ , η ) s [ q p b ( μ , ϑ ) + q p b ( ϑ , η ) ] q p b ( ϑ , ϑ ) .
( X , q p b ) is called a quasi-partial b-metric space where X is a non-empty set and q p b defines a quasi-partial b-metric on X. The number s is called the coefficient of ( X , q p b ) .
Let q p b be a quasi-partial b-metric on the set X. Then
d q p b ( μ , η ) = q p b ( μ , η ) + q p b ( η , μ ) q p b ( μ , μ ) q p b ( η , η ) is a b - metric on X .
Let us see some new examples of quasi-partial b-metric space.
Example 1.
Let X = 0 , π 4 k . Define the metric q p b ( μ , η ) = s i n k | μ η | + μ for any ( μ , η ) X × X and k 2 .
It can be shown here that ( X , q p b ) is a quasi-partial b-metric space. Actually, if q p b ( μ , μ ) = q p b ( μ , η ) = q p b ( η , η ) , that is, μ = s i n k | μ η | + μ = η , then it is obvious that (QPb 1 ) holds for any ( μ , η ) X × X .
In addition, s i n k | μ η | 0 and s i n k | μ η | | μ η | when | μ η | 0 , π 4 k , then q p b ( μ , μ ) = μ s i n k | μ η | + μ = q p b ( μ , η )
q p b ( μ , μ ) = μ = | μ η + η | | μ η | + | η | s i n k | η μ | + η = q p b ( η , μ ) are true , hence ( Q P b 2 ) and ( Q P b 3 ) hold for any ( μ , η ) X × X .
Moreover, for any μ , η , δ X , | μ η | π 4 k π 2 k and [ | μ η | + | η δ | ] π 2 k when k ( | μ δ | + | δ μ | ) 0 , π 2 k , or k ( | μ δ | + | δ μ | ) π 2 , and since sin μ is increasing on 0 , π 2 , we get
q p b ( μ , η ) + q p b ( δ , δ ) = sink | μ η | + μ + δ sink ( | μ δ | + | δ η | ) + μ + δ k ( | μ δ | + | δ η | ) + μ + δ ksink | μ δ | + ksink | δ η | + μ + δ = k ( sink | μ δ | + sink | δ η | + μ + δ ) s ( q p b ( μ , δ ) + q p b ( δ , η ) ) for all μ , η , δ X
and s k , (QPb 4 ) holds, hence (X, qp b ) is a quasi-partial b-metric space with s k .
Lemma 1
([29]). Let ( X , q p b ) be a quasi-partial b-metric space. Then the following hold:
(a)
If q p b ( μ , η ) = 0 then μ = η .
(b)
If μ η , then q p b ( μ , η ) > 0 and q p b ( η , μ ) > 0 .
Definition 2
([29]). Let ( X , q p b ) be a quasi-partial b-metric. Then
(i)
A sequence { μ n } X converges to μ X if and only if
q p b ( μ , μ ) = lim n q p b ( μ , μ n ) = lim n q p b ( μ n , μ ) .
(ii)
A sequence { μ n } X is called a Cauchy sequence if and only if
lim n , m q p b ( μ n , μ m ) and lim m , n q p b ( μ m , μ n ) exist ( and are finite ) .
(iii)
The quasi partial b-metric space ( X , q p b ) is said to be complete if every Cauchy sequence { μ n } X converges with respect to τ q p b to a point μ X such that
q p b ( μ , μ ) = lim n , m q p b ( μ n , μ m ) = lim m , n q p b ( μ m , μ n ) .
(iv)
A mapping f : X X is said to be continuous at μ 0 X if, for every ε > 0 , there exist
δ > 0 such that f ( B ( μ 0 , δ ) ) B ( f ( μ 0 ) , ε ) .
Lemma 2
([29]). Let ( X , q p b ) be a quasi-partial b-metric space and ( X , d q p b ) be the corresponding b-metric space. Then ( X , d q p b ) is complete if ( X , q p b ) is complete.
Definition 3
([30]). Let ( X , q p b ) be a quasi-partial b-metric space and J : X X be a given mapping. Then J is said to be sequentially continuous at z X if for each sequence { μ n } in X converging to z, we have J μ n J z , that is, lim n q p b ( J μ n , J z ) = q p b ( J z , J z ) . Similarly, let S : X X be a given mapping. S is said to be sequentially continuous at z X if for each sequence { μ n } in X converging to z, we have lim n q p b ( S z , S μ n ) = q p b ( S z , S z ) . Then J is said to be sequentially continuous on X if J is sequentially continuous at each z X .

3. Main Result

Let us discuss the main result.
Theorem 3.
Let ( X , q p b ) be a complete quasi-partial b-metric space. Let J , S : X X be self mappings. Assume that there are some ρ [ 0 , 1 ) , α , β ( 0 , 1 ) , α + β < 1 , and s 1 such that the condition
q p b ( J μ , S η ) ρ [ q p b ( μ , η ) ] β [ q p b ( μ , J μ ) ] α 1 s q p b ( η , S η ) 1 α β
is satisfied for all μ , η X such that J μ μ whenever S η η . Then S and J posses a common fixed point.
Proof. 
Let μ 0 X . Define the sequence { μ n } by μ 2 n + 1 = J μ 2 n , μ 2 n + 2 = S μ 2 n + 1 for all n = 0 , 1 , 2 , . If there exist n 0 , 1 , 2 , such that μ n = μ n + 1 = μ n + 2 then μ n is a common fixed point of S and J. Suppose that there are no three consecutive identical terms in the sequence μ n and that μ 0 μ 1 . Now using (1), we deduce that
q p b ( μ 2 n + 1 , μ 2 n + 2 ) = q p b ( J μ 2 n , S μ 2 n + 1 ) ρ [ q p b ( μ 2 n , μ 2 n + 1 ) ] β · [ q p b ( μ 2 n , J μ 2 n ) ] α · 1 s q p b ( μ 2 n + 1 , S μ 2 n + 1 ) ] 1 α β ρ [ q p b ( μ 2 n , μ 2 n + 1 ) ] β · [ q p b ( μ 2 n , μ 2 n + 1 ) ] α · 1 s q p b ( μ 2 n + 1 , μ 2 n + 2 ) 1 α β ρ [ q p b ( μ 2 n , μ 2 n + 1 ) ] β · [ q p b ( μ 2 n , μ 2 n + 1 ) ] α · [ q p b ( μ 2 n + 1 , μ 2 n + 2 ) ] 1 α β [ q p b ( μ 2 n + 1 , μ 2 n + 2 ) ] α + β ρ [ q p b ( μ 2 n , μ 2 n + 1 ) ] α + β
or
[ q p b ( μ 2 n + 1 , μ 2 n + 2 ) ρ [ q p b ( μ 2 n , μ 2 n + 1 ) ]
Hence,
q p b ( μ 2 n + 1 , μ 2 n + 2 ) ρ q p b ( μ 2 n , μ 2 n + 1 ) ρ 2 q p b ( μ 2 n 1 , μ 2 n ) .
Thus,
q p b ( μ 2 n + 1 , μ 2 n + 2 ) ρ 2 n + 1 q p b ( μ 0 , μ 1 )
Similarly,
q p b ( μ 2 n + 1 , μ 2 n ) = q p b ( J μ 2 n , S μ 2 n 1 ) ρ [ q p b ( μ 2 n , μ 2 n 1 ) ] β · [ q p b ( μ 2 n , J μ 2 n ) ] α · 1 s q p b ( μ 2 n 1 , S μ 2 n 1 ) 1 α β ρ [ q p b ( μ 2 n , μ 2 n 1 ) ] β · [ q p b ( μ 2 n , μ 2 n + 1 ) ] α · 1 s q p b ( μ 2 n 1 , μ 2 n ) 1 α β [ q p b b ( μ 2 n + 1 , μ 2 n ) ] 1 α ρ [ q p b ( μ 2 n 1 , μ 2 n ) ] 1 α [ q p b ( μ 2 n + 1 , μ 2 n ) ] ρ [ q p b ( μ 2 n 1 , μ 2 n ) ]
Hence,
q p b ( μ 2 n + 1 , μ 2 n ) ρ q p b ( μ 2 n 1 , μ 2 n ) ρ 2 q p b ( μ 2 n 1 , μ 2 n 2 ) .
Thus,
q p b ( μ 2 n + 1 , μ 2 n ) ρ 2 n q p b ( μ 0 , μ 1 ) .
From (2) and (3), we can deduce that
q p b ( μ n , μ n + 1 ) ρ n q p b ( μ 0 , μ 1 ) .
To prove sequence { μ n } is Cauchy, let n , k N
q p b ( μ n , μ n + k ) s q p b ( μ n , μ n + 1 ) + s 2 q p b ( μ n + 1 , μ n + 2 ) + + s k q p b ( μ n + k 1 , μ n + k ) [ s ρ n + s 2 ρ n + 1 + + s k ρ n + k 1 ] q p b ( μ 0 , μ 1 ) s k i = n n + k 1 ρ i q p b ( μ 0 , μ 1 ) s k i = n ρ i q p b ( μ 0 , μ 1 )
From (5),
q p b ( μ n + m , μ n + m + k ) s k i = m ρ i q p b ( μ n , μ n + 1 ) lim m , n q p b ( μ n + m , μ n + m + k ) s k lim m i = m lim n ρ i q p b ( μ n , μ n + 1 ) = 0
Therefore,
lim n q p b ( μ n , μ n + k ) = lim m , n q p b ( μ n + m , μ n + m + k ) = 0 .
We conclude that { μ n } is a Cauchy sequence. Since ( X , q p b ) is complete, there exists z X such that lim n μ n = z . Next, we shall prove that z is a common fixed point of S and T.
q p b ( J z , μ 2 n + 2 ) = q p b ( J z , S μ 2 n + 1 ) ρ [ q p b ( z , μ 2 n + 1 ) ] β · [ q p b ( z , J z ) ] α · 1 s q p b ( μ 2 n + 1 , S μ 2 n + 1 ) 1 α β ρ [ q p b ( z , μ 2 n + 1 ) ] β · [ q p b ( z , J z ) ] α · [ q p b ( μ 2 n + 1 , S μ 2 n + 1 ) ] 1 α β
Letting n , we get, J z = z .
Similarly,
q p b ( μ 2 n + 1 , S z ) = q p b ( J μ 2 n , S z ) ρ [ q p b ( μ 2 n , S z ) ] β · [ q p b ( μ 2 n , J μ 2 n ) ] α · 1 s q p b ( z , S z ) 1 α β ρ [ q p b ( μ 2 n , S z ) ] β · [ q p b ( μ 2 n , μ 2 n + 1 ) ] α · [ q p b ( z , S z ) ] 1 α β
Letting n , we get S z = z . Hence S and J attain a common fixed point. □
The following fixed point result in the setting of complete quasi-partial b-metric space can be obtained from our main result Theorem 3.
Corollary 1.
Let ( X , q p b ) be a complete quasi-partial b-metric space and J , S : X X be self mappings such that q p b ( J μ , S η ) [ q p b ( μ , J μ ) ] α [ q p b ( η , S η ) ] 1 α for all μ , η X , ρ [ 0 , 1 ) , α ( 0 , 1 ) , J μ μ whenever S η η . Then S and J own a common fixed point.
Proof. 
Taking β = 0 in Theorem 1. □
We now justify our result by illustrating it with an example below.
Example 2.
Let X = { 1 , 2 , 3 , 4 } . Define complete quasi-partial b-metric as q p b ( μ , η ) = max { μ , η } + | μ η | that is:
qp b ( μ , η ) 1234
11357
23246
35435
47654
We define self mappings J and S on X as J : 1 2 3 4 1 2 1 2 , S : 1 2 3 4 1 2 2 1 as shown in Figure 1. Choose α = 1 2 , β = 1 3 , and ρ = 7 10 .
Case 1: Let ( μ , η ) = ( 3 , 4 ) . Without loss of generality, we have
q p b ( J μ , S η ) ρ [ q p b ( μ , η ) ] β [ q p b ( μ , J μ ) ] α 1 s q p b ( η , S η ) 1 α β q p b ( J 3 , S 4 ) = 1 ρ [ q p b ( 3 , 4 ) ] 1 / 3 [ q p b ( 3 , J 3 ) ] 1 / 2 1 s q p b ( 4 , S 4 ) 1 / 6
Case 2: Let ( μ , η ) = ( 1 , 4 )
q p ( J 1 , S 4 ) = 1 ρ [ q p b ( 1 , 4 ) ] 1 / 3 [ q p b ( 1 , J 1 ) ] 1 / 2 1 s q p b ( 4 , S 4 ) 1 / 6
Thus, 1 is the common fixed point of S and J in the setting of interpolative Reich–Rus–Ćirić type contraction. Many more common fixed points can be obtained in similar manner. Hence, a fixed point exists but is not unique.
In our next theorem, we extend our obtained result for Hardy–Rogers contraction by using interpolative approach.
Theorem 4.
Let ( X , q p b ) be a complete quasi-partial b-metric space. Let J , S : X X be self mappings. Assume that there are some ρ [ 0 , 1 ) , α , β , γ ( 0 , 1 ) with α + β + γ < 1 and s 1 such that the condition
q p b ( J μ , S η ) ρ [ q p b ( μ , η ) ] β [ q p b ( μ , J μ ) ] α · [ q p b ( η , S η ) ] γ · 1 2 s ( q p b ( μ , S η ) + q p b ( η , J μ ) ) 1 α β γ
is satisfied for all μ , η X such that J μ μ whenever S η η . Then S and J posses a common fixed point.
Proof. 
For any arbitrary initial point μ 0 ( X , q p b ) , we construct an iterative sequence { μ n } n 1 by μ 2 n + 1 = J μ 2 n , μ 2 n + 2 = S μ 2 n + 1 . If there exist n 0 N such that μ n 0 = μ n 0 + 1 = μ n 0 + 2 then μ n 0 is a common fixed point of S and J. Suppose that there are no three consecutive identical terms in the sequence. Substituting μ by μ 2 n + 1 and η by μ 2 n + 2 in (7), we have
q p b ( μ 2 n + 1 , μ 2 n + 2 ) = q p b ( J μ 2 n , S μ 2 n + 1 ) ρ [ q p b ( μ 2 n , μ 2 n + 1 ) ] β [ q p b ( μ 2 n , J μ 2 n ) ] α · [ q p b ( μ 2 n + 1 , S μ 2 n + 1 ) ] γ · 1 2 s ( q p b ( μ 2 n , S μ 2 n + 1 ) + q p b ( μ 2 n + 1 , J μ 2 n ) ) 1 α β γ ρ [ q p b ( μ 2 n , μ 2 n + 1 ) ] β [ q p b ( μ 2 n , μ 2 n + 1 ) ] α · [ q p b ( μ 2 n + 1 , μ 2 n + 2 ) ] γ · 1 2 s ( q p b ( μ 2 n , μ 2 n + 2 ) + q p b ( μ 2 n + 1 , μ 2 n + 1 ) ) 1 α β γ
By (QPb1) and (8),
ρ [ q p b ( μ 2 n , μ 2 n + 1 ) ] β [ q p b ( μ 2 n , μ 2 n + 1 ) ] α · [ q p b ( μ 2 n + 1 , μ 2 n + 2 ) ] γ · 1 2 s · s ( ( q p b ( μ 2 n + 2 , μ 2 n + 1 ) + q p b ( μ 2 n + 1 , μ 2 n ) ) ) 1 α β γ ρ [ q p b ( μ 2 n , μ 2 n + 1 ) ] β [ q p b ( μ 2 n , μ 2 n + 1 ) ] α · [ q p b ( μ 2 n + 1 , μ 2 n + 2 ) ] γ · 1 2 ( q p b ( μ 2 n + 2 , μ 2 n + 1 ) + q p b ( μ 2 n + 1 , μ 2 n ) ) 1 α β γ
Suppose that
q p b ( μ 2 n , μ 2 n + 1 ) < q p b ( μ 2 n + 1 , μ 2 n + 2 ) 1 2 ( q p b ( μ 2 n + 2 , μ 2 n + 1 ) + q p b ( μ 2 n + 1 , μ 2 n ) ) q p b ( μ 2 n + 1 , μ 2 n + 2 ) .
By (8),
q p b ( μ 2 n + 1 , μ 2 n + 2 ) ρ [ q p b ( μ 2 n , μ 2 n + 1 ) ] β [ q p b ( μ 2 n , μ 2 n + 1 ) ] α · [ q p b ( μ 2 n + 1 , μ 2 n + 2 ) ] γ · [ q p b ( x 2 n + 1 , x 2 n + 2 ) ] 1 α β γ [ q p b ( μ 2 n + 1 , μ 2 n + 2 ) ] α + β ρ [ q p b ( μ 2 n , μ 2 n + 1 ) ] α + β
or
[ q p b ( μ 2 n + 1 , μ 2 n + 2 ) ] ρ [ q p b ( μ 2 n , μ 2 n + 1 ) ]
Therefore, we obtain [ q p b ( μ 2 n + 1 , μ 2 n + 2 ) ] [ q p b ( μ 2 n , μ 2 n + 1 ) ] , which is a contradiction. Thus, we have
1 2 ( q p b ( μ 2 n + 2 , μ 2 n + 1 ) + q p b ( μ 2 n + 1 , μ 2 n ) ) q p b ( μ 2 n + 1 , μ 2 n ) q p b ( μ 2 n + 1 , μ 2 n + 2 ) ρ [ q p b ( μ 2 n , μ 2 n + 1 ) ] β [ q p b ( μ 2 n , μ 2 n + 1 ) ] α · [ q p b ( μ 2 n + 1 , μ 2 n + 2 ) ] γ · [ q p b ( μ 2 n + 1 , μ 2 n ) ] 1 α β γ [ q p b ( μ 2 n + 1 , μ 2 n + 2 ) ] 1 γ ρ [ q p b ( μ 2 n , μ 2 n + 1 ) ] 1 γ
We deduce that
[ q p b ( μ 2 n + 1 , μ 2 n + 2 ) ρ [ q p b ( μ 2 n , μ 2 n + 1 ) ] q p b ( μ 2 n + 1 , μ 2 n + 2 ) ρ q p b ( μ 2 n + 1 , μ 2 n + 2 ) ρ 2 [ q p b ( μ 2 n + 1 , μ 2 n + 2 ) ρ 3 [ q p b ( μ 2 n + 1 , μ 2 n + 2 ) ρ 2 n + 1 q p b ( μ 0 , μ 1 ) q p b ( μ 2 n + 1 , μ 2 n + 2 ) ρ 2 n + 1 q p b ( μ 0 , μ 1 ) .
Similarly
q p b ( μ 2 n + 1 , μ 2 n ) = q p b ( J μ 2 n , S μ 2 n 1 ) ρ [ q p b ( μ 2 n , μ 2 n 1 ) ] β [ q p b ( μ 2 n , J x 2 n ) ] α · [ q p b ( μ 2 n 1 , S μ 2 n 1 ) ] γ · 1 2 s ( q p b ( μ 2 n , S μ 2 n 1 ) + q p b ( μ 2 n 1 , J μ 2 n ) ) 1 α β γ ρ [ q p b ( μ 2 n , μ 2 n 1 ) ] β [ q p b ( μ 2 n , μ 2 n + 1 ) ] α · [ q p b ( μ 2 n 1 , μ 2 n ) ] γ · 1 2 s ( q p b ( μ 2 n , μ 2 n ) + q p b ( μ 2 n 1 , μ 2 n + 1 ) ) 1 α β γ ρ [ q p b ( μ 2 n , μ 2 n 1 ) ] β [ q p b ( μ 2 n , μ 2 n + 1 ) ] α · [ q p b ( μ 2 n 1 , μ 2 n ) ] γ · 1 2 s · s ( ( q p b ( μ 2 n , μ 2 n + 1 ) + q p b ( μ 2 n 1 , μ 2 n ) ) ) 1 α β γ ρ [ q p b ( μ 2 n , μ 2 n 1 ) ] β [ q p b ( μ 2 n , μ 2 n + 1 ) ] α · [ q p b ( μ 2 n 1 , μ 2 n ) ] γ · 1 2 ( q p b ( μ 2 n , μ 2 n + 1 ) + q p b ( μ 2 n 1 , μ 2 n ) ) 1 α β γ
1 2 ( q p b ( μ 2 n + 2 , μ 2 n + 1 ) + q p b ( μ 2 n + 1 , μ 2 n ) ) q p b ( μ 2 n 1 , μ 2 n ) q p b ( μ 2 n + 1 , μ 2 n ) ρ [ q p b ( μ 2 n , μ 2 n 1 ) ] β [ q p b ( μ 2 n , μ 2 n + 1 ) ] α · [ q p b ( μ 2 n 1 , μ 2 n ) ] γ · [ q p b ( μ 2 n 1 , μ 2 n ) ] 1 α β γ [ q p b ( μ 2 n + 1 , μ 2 n ) ] 1 γ ρ [ q p b ( μ 2 n 1 , μ 2 n ) ] 1 γ
We deduce that
[ q p b ( μ 2 n + 1 , μ 2 n ) ρ [ q p b ( μ 2 n 1 , μ 2 n ) ] q p b ( μ 2 n + 1 , μ 2 n ) ρ q p b ( μ 2 n 1 , μ 2 n ) ρ 2 [ q p b ( μ 2 n 2 , μ 2 n 1 ) ρ 2 n q p b ( μ 0 , μ 1 ) q p b ( μ 2 n + 1 , μ 2 n ) ρ 2 n q p b ( μ 0 , μ 1 )
By (6), sequence { μ n } is Cauchy. By completeness property, there exists z X such that
lim n μ n = z .
Again, we shall show that S and T attain z as a common fixed point of X.
q p b ( J z , μ 2 n + 2 ) = q p b ( J z , S μ 2 n + 1 ) ρ [ q p b ( z , μ 2 n + 1 ) ] β [ q p b ( z , J z ) ] α · [ q p b ( μ 2 n + 1 , S μ 2 n + 1 ) ] γ · 1 2 s ( q p b ( z , S μ 2 n + 1 ) + q p b ( μ 2 n + 1 , J z ) ) 1 α β γ ρ [ q p b ( z , μ 2 n + 1 ) ] β [ q p b ( z , T z ) ] α · [ q p b ( μ 2 n + 1 , μ 2 n + 2 ) ] γ · 1 2 s ( q p b ( z , μ 2 n + 2 ) + q p b ( μ 2 n + 1 , J z ) ) 1 α β γ
Letting n , we get, J z = z .
Similarly
q p b ( μ 2 n + 1 , S z ) = q p b ( J μ 2 n , S z ) ρ [ q p b ( μ 2 n , z ) ] β [ q p b ( x 2 n , J μ 2 n ) ] α · [ q p b ( z , S z ) ] γ · 1 2 s ( q p b ( μ 2 n , S z ) + q p b ( z , J μ 2 n ) ) 1 α β γ
Letting n , we get S z = z . Hence self mappings S and J posses common fixed points in complete metric space. □
The above result (Theorem 3) motivates us to generalize the interpolative Reich–Rus–Ćirić contraction for a family of maps. More precisely:
Problem 1.
Let ( X , q p b ) be a complete quasi-partial b-metric space. Consider a family of self maps S n : X X , n 1 , and s 1 such that
q p b ( S i μ , S j η ) ρ i , j q p b ( μ , η ) β j · q p b ( μ , J μ ) α i · 1 s q p b ( η , S η ) 1 α i β j
What are the conditions on ρ i , j , α i , β j for S n to have a common fixed point?

4. Conclusions

The significant contribution of the paper proves the existence of common fixed points for interpolative Reich–Rus–Ćirić and Hardy–Rogers contraction mappings on quasi-partial b-metric space. Many real world problems and experimental signals lack a sensation of smoothness in their traces. Therefore, to model these signals, interpolants are required that are non-differentiable in a dense set of points in the domain. Fractal interpolation, which is based on the theory of iterated function system, is used to solve such problems. The uniqueness property of fixed points for these mappings and their application in the study of nonlinear integral equations will be an interesting concept for subsequent work.

Author Contributions

Conceptualization, V.N.M., L.M.S.R., P.G. and S.V.; investigation, V.N.M., L.M.S.R., P.G. and S.V.; methodology, V.N.M., L.M.S.R., P.G. and S.V.; writing—review editing, V.N.M., L.M.S.R., P.G. and S.V. All authors contributed equally and significantly in writing this article. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Acknowledgments

The authors would like to thank the anonymous referees for their careful reading, valuable comments and suggestion that helps to improve the manuscript.

Conflicts of Interest

The authors declare that they have no competing interests.

References

  1. Banach, S. Sur les opérationsdans les ensembles abstraits et leur application aux équationsintégrales. Fund Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
  2. Bakhtin, I.A. The contraction principle in quasi-metric spaces. Int. Funct. Anal. 1989, 30, 26–37. [Google Scholar]
  3. Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
  4. Shukla, S. Partial b-metric spaces and fixed point theorems. Mediterr. J. Math. 2014, 11, 703–711. [Google Scholar] [CrossRef]
  5. Matthews, S.G. Partial metric topology. Ann. N. Y. Acad. Sci. 1994, 728, 183–197. [Google Scholar] [CrossRef]
  6. Kannan, R. Some results on fixed points. Bull. Calcutta Math. Soc. 1968, 60, 71–76. [Google Scholar]
  7. Karapinar, E. Revisiting the Kannan type contractions via interpolation. Adv. Theory Nonlinear Anal. Appl. 2018, 2, 85–87. [Google Scholar] [CrossRef] [Green Version]
  8. Reich, S. Fixed point of contractive functions. Bollettino dell’Unione Matematica Italiana 1972, 4, 26–42. [Google Scholar]
  9. Ćirić, L.B. On contraction type mappings. Math. Balk. 1971, 1, 52–57. [Google Scholar]
  10. Ćirić, L.B. Generalized contractions and fixed-point theorems. Publ. Inst. Math. (Beograd) 1971, 12, 19–26. [Google Scholar]
  11. Reich, S. Some remarks concerning contraction mappings. Can. Math. Bull. 1971, 14, 121–124. [Google Scholar] [CrossRef]
  12. Reich, S. Kannan’s fixed point theorem. Boll. dell’Unione Mat. Ital. 1971, 4, 1–11. [Google Scholar]
  13. Rus, I.A. Generalized Contractions and Applications; Cluj University Press: Clui-Napoca, Romania, 2001. [Google Scholar]
  14. Rus, I.A. Principles and Applications of the Fixed Point Theory; Editura Dacia: Clui-Napoca, Romania, 1979. (In Romanian) [Google Scholar]
  15. Hardy, G.E.; Rogers, T.D. A generalization of a fixed point theorem of Reich. Can. Math. Bull. 1973, 16, 201–206. [Google Scholar] [CrossRef]
  16. Karapinar, E.; Agarwal, R.P.; Aydi, H. Interpolative Reich-Rus-Ćirić type contractions on partial-metric spaces. Mathematics 2018, 6, 256. [Google Scholar] [CrossRef] [Green Version]
  17. Karapinar, E.; Alqahtani, O.; Aydi, H. On interpolative Hardy-Rogers type contractions. Symmetry 2018, 11, 8. [Google Scholar] [CrossRef] [Green Version]
  18. Aydi, H.; Karapinar, E.; Hierro, A.F.R. ω-Interpolative Reich-Rus-Ćirić type contractions. Mathematics 2019, 7, 57. [Google Scholar] [CrossRef] [Green Version]
  19. Debnath, P.; de La Sen, M. Set-valued interpolative Hardy-Rogers and set-valued Reich-Rus-Ćirić-type contractions in b-metric spaces. Mathematics 2019, 7, 849. [Google Scholar] [CrossRef] [Green Version]
  20. Karapinar, E.; Agarwal, R.P. Interpolative Reich-Rus-Ćirić type contractions via simulation functions. Mathematics 2018, 6, 256. [Google Scholar] [CrossRef] [Green Version]
  21. Alqahtani, B.; Fulga, A.; Karapinar, E. Fixed Point Results on △-Symmetric Quasi-Metric Space via Simulation Function with an Application to Ulam Stability. Mathematics 2018, 6, 208. [Google Scholar] [CrossRef] [Green Version]
  22. Aydi, H.; Chen, C.-M.; Karapınar, E. Interpolative Reich-Rus-Ćirić Type Contractions via the Branciari Distance. Mathematics 2019, 7, 84. [Google Scholar] [CrossRef] [Green Version]
  23. Aydi, H.; Karapınar, E. A Meir Keeler common type fixed point theorem on partial metric spaces. Fixed Point Theory Appl. 2012, 2012, 26. [Google Scholar] [CrossRef] [Green Version]
  24. Ćirić, L.J.; Samet, B.; Aydi, H.; Vetro, C. Common fixed points of generalized contractions on partial-metric spaces and an application. Appl. Math. Comput. 2011, 218, 2398–2406. [Google Scholar] [CrossRef]
  25. Karapınar, E.; Chi, K.P.; Thanh, T.D. A generalization of Ciric quasi-contractions. Abstr. Appl. Anal. 2012, 2012. [Google Scholar] [CrossRef] [Green Version]
  26. Mlaiki, N.; Abodayeh, K.; Aydi, H.; Abdeljawad, T.; Abuloha, M. Rectangular metric-like type spaces and related fixed points. J. Math. 2018, 2018. [Google Scholar] [CrossRef]
  27. Krein, S.G.; Petunin, J.I.; Semenov, E.M. Interpolation of Linear Operators; American Mathematical Society: Providence, RI, USA, 1978. [Google Scholar]
  28. Gupta, A.; Gautam, P. Topological structure of quasi-partial b-metric spaces. Int. J. Pure Math. Sci. 2016, 17, 8–18. [Google Scholar] [CrossRef]
  29. Gupta, A.; Gautam, P. Quasi partial b-metric spaces and some related fixed point theorems. Fixed Point Theory Appl. 2015, 2015, 18. [Google Scholar] [CrossRef] [Green Version]
  30. Gautam, P.; Mishra, V.N.; Negi, K. Common fixed point theorems for cyclic Reich-Rus-Ćirić contraction mappings in quasi-partial b-metric space. Ann. Fuzzy Math. Inf. 2020. accepted. [Google Scholar]
Figure 1. 1 is the common fixed point of S and J.
Figure 1. 1 is the common fixed point of S and J.
Mathematics 08 01598 g001

Share and Cite

MDPI and ACS Style

Mishra, V.N.; Sánchez Ruiz, L.M.; Gautam, P.; Verma, S. Interpolative Reich–Rus–Ćirić and Hardy–Rogers Contraction on Quasi-Partial b-Metric Space and Related Fixed Point Results. Mathematics 2020, 8, 1598. https://doi.org/10.3390/math8091598

AMA Style

Mishra VN, Sánchez Ruiz LM, Gautam P, Verma S. Interpolative Reich–Rus–Ćirić and Hardy–Rogers Contraction on Quasi-Partial b-Metric Space and Related Fixed Point Results. Mathematics. 2020; 8(9):1598. https://doi.org/10.3390/math8091598

Chicago/Turabian Style

Mishra, Vishnu Narayan, Luis Manuel Sánchez Ruiz, Pragati Gautam, and Swapnil Verma. 2020. "Interpolative Reich–Rus–Ćirić and Hardy–Rogers Contraction on Quasi-Partial b-Metric Space and Related Fixed Point Results" Mathematics 8, no. 9: 1598. https://doi.org/10.3390/math8091598

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop