Frequency and Severity Dependence in the Collective Risk Model: An Approach Based on Sarmanov Distribution
Abstract
1. Introduction
2. Collective Model with Frequency Dependent on the Individual Claims
2.1. Introducing Sarmanov Dependence
2.2. Simulation from the Collective Model
2.3. Parameters Estimation
- Phase 1
- By MLE, find initial values for the parameters of the marginal distributions. Then, iterate the following two steps:
- Step 1
- (iteration j) Given the parameters for the marginal distributions, find within the interval defined in (5) for this dependence parameter by maximizing the log-likelihood
- Step 2
- Given , obtain new values for the parameters of the marginals by maximizing the log-likelihood function
3. Particular Cases
3.1. Particular Severity Distributions
3.2. Particular Counting Distributions
- (i)
- If , then
- (ii)
- If , then
4. Numerical Study
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
TLA | Three letter acronym |
LD | linear dichroism |
Appendix A
References
- Erhardt, V.; Czado, C. Modeling dependent yearly claim totals including zero claims in private health insurance. Scand. Actuar. J. 2012, 2, 106–129. [Google Scholar]
- Czado, C.; Kastenmeier, R.; Brechmann, E.C.; Min, A. A mixed copula model for insurance claims and claim sizes. Scand. Actuar. J. 2012, 4, 278–305. [Google Scholar] [CrossRef]
- Krämer, N.; Brechmann, E.; Silvestrini, D.; Czado, C. Total loss estimation using copula-based regression models. Insur. Math. Econ. 2013, 53, 829–839. [Google Scholar] [CrossRef]
- Lee, G.Y.; Shi, P. A dependent frequency–severity approach to modeling longitudinal insurance claims. Insur. Math. Econ. 2019, 87, 115–129. [Google Scholar] [CrossRef]
- Oh, R.; Shi, P.; Ahn, J.Y. Bonus-Malus premiums under the dependent frequency-severity modeling. Scand. Actuar. J. 2020, 3, 172–195. [Google Scholar] [CrossRef]
- Bahraoui, Z.; Bolancé, C.; Pelican, E.; Vernic, R. On the bivariate distribution and copula. An application on insurance data using truncated marginal distributions. Stat. Oper. Res. Trans. 2015, 39, 209–230. [Google Scholar]
- Abdallah, A.; Boucher, J.; Cossette, H. Sarmanov family of multivariate distributions for bivariate dynamic claim counts model. Insur. Math. Econ. 2016, 68, 120–133. [Google Scholar] [CrossRef]
- Bolancé, C.; Vernic, R. Multivariate count data generalized linear models: Three approaches based on the Sarmanov distribution. Insur. Math. Econ. 2019, 85, 89–103. [Google Scholar] [CrossRef]
- Yang, Y.; Yuen, K.C. Finite-time and infinite-time ruin probabilities in a two-dimensional delayed renewal risk model with Sarmanov dependent claims. J. Math. Anal. Appl. 2016, 442, 600–625. [Google Scholar] [CrossRef]
- Guo, F.; Wang, D.; Yang, H. Asymptotic results for ruin probability in a two-dimensional risk model with stochastic investment returns. J. Comput. Appl. Math. 2017, 325, 198–221. [Google Scholar] [CrossRef]
- Ratovomirija, G. On mixed Erlang reinsurance risk: Aggregation, capital allocation and default risk. Eur. Actuar. J. 2016, 6, 149–175. [Google Scholar] [CrossRef]
- Ratovomirija, G.; Tamraz, M.; Vernic, R. On some multivariate Sarmanov mixed Erlang reinsurance risks: Aggregation and capital allocation. Insur. Math. Econ. 2017, 74, 197–209. [Google Scholar] [CrossRef][Green Version]
- Vernic, R. Capital allocation for Sarmanov’s class of distributions. Methodol. Comput. Appl. Probab. 2017, 19, 311–330. [Google Scholar] [CrossRef]
- Joe, H.; Xu, J.J. The Estimation Method of Inference Functions for Margins for Multivariate Models. 1996. Available online: https://open.library.ubc.ca/cIRcle/collections/facultyresearchandpublications/52383/items/1.0225985 (accessed on 1 August 2020).
- Tamraz, M.; Vernic, R. On the evaluation of multivariate compound distributions with continuous severity distributions and Sarmanov’s counting distribution. ASTIN Bull. 2018, 48, 841–870. [Google Scholar] [CrossRef]
Number of Cases | 99,972 Policyholders | |||
---|---|---|---|---|
Frequency | TRUE | Poisson | NB | |
0 | 92,538.00 | 91,482.28 | 92,524.63 | |
1 | 6166.00 | 8118.58 | 6285.65 | |
2 | 1122.00 | 360.24 | 950.48 | |
3 | 125.00 | 10.66 | 170.11 | |
4 | 18.00 | 0.24 | 32.81 | |
5 | 3.00 | 0.00 | 1.73 | |
Chi-Square | 6761.20 | 52.81 | ||
Initial Parameters | ||||
Number of Cases | Mean | Median | STD | Skewness | Pearson’s Correlation | |
---|---|---|---|---|---|---|
Cost per claim | 8872 Claims | 859.92 | 513.50 | 2448.27 | 24.01 | 0.31 |
Cost per policyholder | 7434 Policyholders | 758.13 | 513.50 | 1580.81 | 15.72 | 0.38 |
Gamma | Lognormal | |||||
Cost per claim | Initial Parameter | |||||
AIC | 136,470 | 134,172 | ||||
Cost per policyholder | Initial Parameter | |||||
AIC | 112,829 | 111,557 |
Cost Per Claim | |||||||
Gamma | Lognormal | ||||||
Poisson | NB | Poisson | NB | ||||
0.0877 | r | 0.5998 | 0.0875 | r | 1.2693 | ||
p | 0.8727 | p | 0.9355 | ||||
0.6650 | 0.5892 | 5.8384 | 5.8384 | ||||
0.0008 | 0.0006 | 1.3553 | 1.3552 | ||||
2.8197 | 2.9530 | 17.1549 | 17.5107 | ||||
0.6020 | 0.5625 | 0.3769 | 0.3717 | ||||
AIC | 199,566 | AIC | 199,109 | AIC | 197,249 | AIC | 195,744 |
BIC | 199,583 | BIC | 199,126 | BIC | 197,264 | BIC | 195,759 |
Cost Per Policyholder | |||||||
Gamma | Lognormal | ||||||
Poisson | NB | Poisson | NB | ||||
0.0887 | r | 0.2897 | 0.0887 | r | 0.2897 | ||
p | 0.7655 | p | 0.7655 | ||||
0.7152 | 0.6951 | 5.7882 | 5.7882 | ||||
0.0009 | 0.0009 | 1.3441 | 1.3441 | ||||
2.8157 | 3.0631 | 16.8899 | 18.3588 | ||||
0.6152 | 0.5753 | 0.3824 | 0.3621 | ||||
AIC | 175,690 | AIC | 173,754 | AIC | 174,402 | AIC | 172,374 |
BIC | 175,707 | BIC | 173,769 | BIC | 174,417 | BIC | 172,389 |
Cost Per Claim | |||||
Gamma | Lognormal | ||||
Poisson | NB | Poisson | NB | ||
E(S) | 74.64 | 85.96 | 75.40 | 75.46 | |
158,977.20 | 240,279.00 | 407,210.20 | 412,289.50 | ||
74.62 | 85.89 | 75.33 | 75.33 | ||
158,880.50 | 239,745.70 | 406,504.30 | 411,029.60 | ||
Cost Per Policyholder | |||||
Gamma | Lognormal | ||||
Poisson | NB | Poisson | NB | ||
67.27 | 68.26 | 71.66 | 71.87 | ||
128,654.30 | 174,034.60 | 378,528.60 | 490,725.00 | ||
67.26 | 68.20 | 71.59 | 71.59 | ||
128,584.80 | 173,651.10 | 377,286.30 | 484,877.30 |
Pure Premium, | Risk Premium, | |||
---|---|---|---|---|
Indep. | Depend. | Indep. | Depend. | |
Cost per policyholder | 71.59 | 71.87 | 767.92 | 772.39 |
Cost per claim | 75.33 | 75.46 | 716.45 | 717.56 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolancé, C.; Vernic, R. Frequency and Severity Dependence in the Collective Risk Model: An Approach Based on Sarmanov Distribution. Mathematics 2020, 8, 1400. https://doi.org/10.3390/math8091400
Bolancé C, Vernic R. Frequency and Severity Dependence in the Collective Risk Model: An Approach Based on Sarmanov Distribution. Mathematics. 2020; 8(9):1400. https://doi.org/10.3390/math8091400
Chicago/Turabian StyleBolancé, Catalina, and Raluca Vernic. 2020. "Frequency and Severity Dependence in the Collective Risk Model: An Approach Based on Sarmanov Distribution" Mathematics 8, no. 9: 1400. https://doi.org/10.3390/math8091400
APA StyleBolancé, C., & Vernic, R. (2020). Frequency and Severity Dependence in the Collective Risk Model: An Approach Based on Sarmanov Distribution. Mathematics, 8(9), 1400. https://doi.org/10.3390/math8091400