Approximation Properties of Solutions of a Mean Value-Type Functional Inequality, II
Abstract
:1. Introduction
Assume that is a group and is a metric group equipped with the metric . Given an arbitrary constant , can we choose a constant such that for every function satisfying for all there exists a group homomorphism with for all ?
2. Preliminaries
3. Generalized Hyers-Ulam Stability of (2)
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Ulam, S.M. Problems in Modern Mathematics; Wiley: New York, NY, USA, 1960; Chapter VI. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 86, 222–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forti, G.L. Hyers-Ulam stability of functional equations in several variables. Aequ. Math. 1995, 50, 143–190. [Google Scholar] [CrossRef]
- Hyers, D.H.; Isac, G.; Rassias, T.M. Stability of Functional Equations in Several Variables; Birkhäuser: Berlin, Germany, 1998. [Google Scholar]
- Hyers, D.H.; Rassias, T.M. Approximate homomorphisms. Aequ. Math. 1992, 44, 125–153. [Google Scholar] [CrossRef]
- Jung, S.-M. Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis; Springer: New York, NY, USA, 2011. [Google Scholar]
- Jung, S.-M.; Sahoo, P.K. On the stability of a mean value type functional equation. Demonstr. Math. 2000, 33, 793–796. [Google Scholar] [CrossRef]
- Aczél, J. A mean value property of the derivative of quadratic polynomials—Without mean values and derivatives. Math. Mag. 1985, 58, 42–45. [Google Scholar]
- Haruki, S. A property of quadratic polynomials. Am. Math. Mon. 1979, 86, 577–579. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Riedel, T. Mean Value Theorems and Functional Equations; World Scientific: Singapore, 1998. [Google Scholar]
- Kannappan Pl Sahoo, P.K.; Jacobson, M.S. A characterization of low degree polynomials. Demonstr. Math. 1995, 28, 87–96. [Google Scholar]
- Rudin, W. Functional Analysis, 2nd ed.; McGraw-Hill: New York, NY, USA, 1991. [Google Scholar]
- Choi, G.; Jung, S.-M.; Lee, Y.-H. Approximation properties of solutions of a mean value type functional inequalities. J. Nonlinear Sci. Appl. 2017, 10, 4507–4514. [Google Scholar] [CrossRef]
- Găvruţa, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 1994, 184, 431–436. [Google Scholar] [CrossRef] [Green Version]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, S.-M.; Lee, K.-S.; Rassias, M.T.; Yang, S.-M. Approximation Properties of Solutions of a Mean Value-Type Functional Inequality, II. Mathematics 2020, 8, 1299. https://doi.org/10.3390/math8081299
Jung S-M, Lee K-S, Rassias MT, Yang S-M. Approximation Properties of Solutions of a Mean Value-Type Functional Inequality, II. Mathematics. 2020; 8(8):1299. https://doi.org/10.3390/math8081299
Chicago/Turabian StyleJung, Soon-Mo, Ki-Suk Lee, Michael Th. Rassias, and Sung-Mo Yang. 2020. "Approximation Properties of Solutions of a Mean Value-Type Functional Inequality, II" Mathematics 8, no. 8: 1299. https://doi.org/10.3390/math8081299