New Analytical Solutions for Longitudinal Vibration of a Floating Pile in Layered Soils with Radial Heterogeneity
Abstract
:1. Introduction
2. Simplified Mechanical Model and Basic Assumptions
- (1)
- The soil around the pile consists of two zones, one is a semi-infinite area, the other is an inner disturbed area.
- (2)
- (3)
- The displacement and shear stress at the interface between neighboring annular sub-zones are continuous.
- (4)
- The surrounding soils are linear visco-elastic continuums with frequency-dependent viscous-type damping [36].
- (5)
- The deformations of the soil–pile system are small. There is no interface sliding between the pile and soils.
3. Governing Equations
4. Boundary and Initial Conditions
5. Solution of the Governing Soil
6. Results and Discussion
6.1. Verification of the Solution
6.2. Parametric Analyses
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D
References
- Varghese, R.; Boominathan, A.; Banerjee, S. Stiffness and load sharing characteristics of piled raft foundations subjected to dynamic loads. Soil Dyn. Earthq. Eng. 2020, 133, 106177. [Google Scholar] [CrossRef]
- Xu, Y.; Zeng, Z.; Wang, Z.; Yan, H. Seismic study of a widened and reconstructed long-span continuous steel truss bridge. Struct. Infrastruct. E 2020, 1, 1–11. [Google Scholar] [CrossRef]
- Gao, L.; Wang, K.H.; Xiao, S.; Li, Z.Y.; Wu, J.T. An analytical solution for excited pile vibrations with variable section impedance in the time domain and its engineering application. Comput. Geotech. 2016, 73, 170–178. [Google Scholar] [CrossRef]
- Wu, W.B.; Liu, H.; Yang, X.Y.; Jiang, G.S.; EI Naggar, M.H.; Mei, G.X.; Liang, R.Z. New method to calculate the apparent phase velocity of open-ended pipe pile. Can. Geotech. J. 2020, 57, 127–138. [Google Scholar] [CrossRef]
- Yuan, B.X.; Sun, M.; Xiong, L.; Luo, Q.Z.; Pradhan, S.P.; Li, H.Z. Investigation of 3D deformation of transparent soil around a laterally loaded pile based on a hydraulic gradient model test. J. Build. Eng. 2020, 28, 1–9. [Google Scholar] [CrossRef]
- Luan, L.B.; Zheng, C.J.; Kouretzis, G.; Ding, X.M. Dynamic analysis of pile groups subjected to horizontal loads considering coupled pile-to-pile interaction. Comput. Geotech. 2020, 117, 103276. [Google Scholar] [CrossRef]
- Miao, Y.; Shi, Y.; Zhuang, H.Y.; Wang, S.Y.; Liu, H.B.; Yu, X.B. Influence of seasonal frozen soil on near-surface shear wave velocity in Eastern Hokkaido. Geophys. Res. Lett. 2019, 46, 9497–9508. [Google Scholar] [CrossRef]
- Liang, F.Y.; Zhao, M.Y.; Qin, C.R.; Jia, Y.J.; Wang, Z.W.; Yue, G.P. Centrifugal test of a road embankment built after new dredger fill on thick marine clay. Mar. Georesour. Geotech. 2020, 38, 114–121. [Google Scholar] [CrossRef]
- Meng, K.; Cui, C.Y.; Li, H.J. An Ontology Framework for Pile Integrity Evaluation Based on Analytical Methodology. IEEE Access 2020, 8, 72158–72168. [Google Scholar] [CrossRef]
- Shadlou, M.; Bhattacharya, S. Dynamic stiffness of pile in a layered continuum. Géotechnique 2014, 64, 303–319. [Google Scholar] [CrossRef]
- Nogami, T.; Konagai, K. Dynamic Response of Vertically Loaded Nonlinear Pile Foundations. J. Geotech. Eng. 1987, 113, 147–160. [Google Scholar] [CrossRef]
- Anoyatis, G.; Mylonakis, G. Dynamic Winkler modulus for axially loaded piles. Geotechnique 2012, 62, 521–536. [Google Scholar] [CrossRef] [Green Version]
- Novak, M.; Nogami, T.; Aboulella, F. Dynamic soil reactions for plane strain case. J. Eng. Mech. ASCE 1978, 104, 953–959. [Google Scholar]
- Manna, B.; Baidya, D.K. Vertical vibration of full-scale pile—Analytical and experimental study. J. Geotech. Geoenviron. 2009, 135, 1452–1461. [Google Scholar] [CrossRef]
- Hu, C.B.; Wang, K.H.; Xie, K.H. Time domain axial response of dynamically loaded Pile in viscous damping soil layer. J. Vib. Eng. 2004, 17, 72–77. [Google Scholar] [CrossRef]
- Wu, W.B.; Jiang, G.S.; Huang, S.G.; Leo, C.J. Vertical dynamic response of pile embedded in layered transversely isotropic soil. Math. Probl. Eng. 2014, 12, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.J.; Kouretzis, G.P.; Sloan, S.W.; Liu, H.; Ding, X.M. Vertical vibration of an elastic pile embedded in poroelastic soil. Soil Dyn. Earthq. Eng. 2015, 77, 171–181. [Google Scholar] [CrossRef]
- Cai, Y.Q.; Hu, X.Q. Vertical vibrations of a rigid foundation embedded in a poroelastic half-space. J. Eng. Mech. 2010, 136, 390–398. [Google Scholar] [CrossRef]
- Yang, X.; Pan, Y. Axisymmetrical analytical solution for vertical vibration of end–bearing pile in saturated viscoelastic soil layer. Appl. Math. Mech. 2010, 31, 193–204. [Google Scholar] [CrossRef]
- Cui, C.Y.; Zhang, S.P.; David, C. Dynamic impedance of a floating pile embedded in poro-visco-elastic soils subjected to longitudinal harmonic loads. Geomech. Eng. 2018, 15, 793–803. [Google Scholar] [CrossRef]
- Cui, C.Y.; Zhang, S.P.; Meng, K.; Xu, C.S.; Yang, G. An analytical solution for integrity detection of a floating pile embedded in saturated viscoelastic half space. Int. J. Distrib. Sens. Netw. 2018, 14, 1–8. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Cherstvy, A.G.; Grebenkov, D.S.; Metzler, R. Anomalous, non-gaussian tracer diffusion in crowded two-dimensional environments. New J. Phys. 2016, 18, 013027. [Google Scholar] [CrossRef]
- Grima, R.; Schnell, S. A systematic investigation of the rate laws valid in intracellular environments. Biophys. Chemist. 2006, 124, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Novak, M.; Han, Y.C. Impedances of Soil Layer with Boundary Zone. J. Geotech. Eng. 1990, 116, 1008–1014. [Google Scholar] [CrossRef]
- Liu, J.W.; Cui, N.; Zhu, N.; Han, B.; Liu, J. Investigation of cyclic pile-sand interface weakening mechanism based on large-scale CNS cyclic direct shear tests. Ocean Eng. 2019, 194, 106650. [Google Scholar] [CrossRef]
- Novak, M.; Sheta, M. Approximate approach to contact problems of piles. In Proceedings of the Geotechnical Engineering Division, ASCE National Convention, New York, NY, USA, 30 October 1980; pp. 53–79. [Google Scholar]
- Veletsos, A.S.; Dotson, K.W. Vertical and Torsional Vibration of Foundations in Inhomogeneous Media. J. Geotech. Eng. 1988, 114, 1002–1021. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.C.; Sabin, G.C.W. Impedances for Radially Inhomogeneous Viscoelastic Soil Media. J. Eng. Mech. 1995, 121, 939–947. [Google Scholar] [CrossRef]
- EI Naggar, M.H. Vertical and torsional soil reactions for radially inhomogeneous soil layer. Struct. Eng. Mech. 2000, 10, 299–312. [Google Scholar] [CrossRef]
- Wang, K.H.; Yang, D.Y.; Zhang, Z.; Leo, C.J. A new approach for vertical impedance in radially inhomogeneous soil layer. Int. J. Numer. Anal. Meth. 2012, 36, 697–707. [Google Scholar] [CrossRef]
- Yang, D.Y.; Wang, K.H.; Zhang, Z.; Leo, C.J. Vertical dynamic response of pile in a radially heterogeneous soil layer. Int. J. Numer. Anal. Meth. 2009, 33, 1039–1054. [Google Scholar] [CrossRef]
- Li, Z.Y.; Wang, K.H.; Wu, W.B.; Leo, C.J. Vertical vibration of a large diameter pile embedded in inhomogeneous soil based on the Rayleigh-Love rod theory. J. Zhejiang Univ. Sci. A 2016, 17, 974–988. [Google Scholar] [CrossRef] [Green Version]
- Nogami, T.; Novak, M. Soil-pile interaction in vertical vibration. Earthq. Eng. Struct. D 1976, 4, 277–293. [Google Scholar] [CrossRef]
- Militano, G.; Rajapakse, R.K.N.D. Dynamic response of a pile in a multi-layered soil to transient torsional and axial loading. Géotechnique 1999, 49, 91–109. [Google Scholar] [CrossRef]
- Cui, C.Y.; Meng, K.; Wu, Y.J.; Chapman, D.; Liang, Z.M. Dynamic response of pipe pile embedded in layered visco-elastic media with radial inhomogeneity under vertical excitation. Geomech. Eng. 2018, 16, 609–618. [Google Scholar] [CrossRef]
- Zheng, C.J.; Liu, H.L.; Kouretzis, G.P.; Sloan, S.W.; Ding, X.M. Vertical response of a thin-walled pipe pile embedded in viscoelastic soil to a transient point load with application to low-strain integrity testing. Comput. Geotech. 2015, 70, 50–59. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Z.; Cui, C.; Meng, K.; Xin, Y.; Pei, H.; Li, H. New Analytical Solutions for Longitudinal Vibration of a Floating Pile in Layered Soils with Radial Heterogeneity. Mathematics 2020, 8, 1294. https://doi.org/10.3390/math8081294
Liang Z, Cui C, Meng K, Xin Y, Pei H, Li H. New Analytical Solutions for Longitudinal Vibration of a Floating Pile in Layered Soils with Radial Heterogeneity. Mathematics. 2020; 8(8):1294. https://doi.org/10.3390/math8081294
Chicago/Turabian StyleLiang, Zhimeng, Chunyi Cui, Kun Meng, Yu Xin, Huafu Pei, and Haijiang Li. 2020. "New Analytical Solutions for Longitudinal Vibration of a Floating Pile in Layered Soils with Radial Heterogeneity" Mathematics 8, no. 8: 1294. https://doi.org/10.3390/math8081294
APA StyleLiang, Z., Cui, C., Meng, K., Xin, Y., Pei, H., & Li, H. (2020). New Analytical Solutions for Longitudinal Vibration of a Floating Pile in Layered Soils with Radial Heterogeneity. Mathematics, 8(8), 1294. https://doi.org/10.3390/math8081294