Pricing of Barrier Options on Underlying Assets with Jump-Diffusion Dynamics: A Mellin Transform Approach
Abstract
:1. Introduction
2. Preliminary Results
2.1. Generalized Black–Scholes Kernel and Properties
2.2. Properties of the Jump Function
2.3. European Option Pricing Function for Underlyings with Jump-Diffusion Dynamics
2.4. Image Function Solutions
3. Formulation of the Barrier Option Pricing Problem for Underlyings with Jump-Diffusion Dynamics
4. Pricing of Knock-out Barrier Options
4.1. g Is Bounded
4.2. g Is Unbounded But as
5. Pricing of Knock-in Barrier Options
6. Pricing of Barrier Options on Futures under Jump-Diffusion Dynamics
7. Discussion and Concluding Remarks
Funding
Conflicts of Interest
References
- Black, F.; Scholes, M. The pricing of options and corporate liabilities. J. Political Econ. 1973, 81, 637–654. [Google Scholar] [CrossRef] [Green Version]
- Hull, J.C. Fundamentals of Futures and Options Markets, 6th ed.; Pearson: London, UK, 2008. [Google Scholar]
- Wilmott, P.; Dewynne, J.; Howison, S. Option Pricing: Mathematical Models and Computation; Press Syndicate: Oxford, UK, 1994. [Google Scholar]
- Merton, R.C. Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 1976, 3, 125–144. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, E. Stochastic Processes of Common Stock Returns: An Empirical Examination. Ph.D Thesis, Massachussetts Institute of Technology, Cambridge, MA, USA, 1980. [Google Scholar]
- Jarrow, R.; Rosenfeld, E. Jump risks and the intertemporal capital asset pricing model. J. Bus. 1984, 57, 337–351. [Google Scholar] [CrossRef]
- Ball, C.A.; Torous, W.N. On jumps in common stock prices and their impact on call option pricing. J. Financ. 1985, 40, 155–173. [Google Scholar] [CrossRef]
- Brown, S.; Dybvig, P. The empirical implications of the Cox-Ingersoll-Ross theory of the term structure of interest rates. J. Financ. 1986, 41, 617–630. [Google Scholar] [CrossRef]
- Cont, R.; Tankov, P. Financial Modelling with Jump Processes; Chapman and Hall/CRC Financial Mathematics Series; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Rodrigo, M.R.; Mamon, R.S. An application of Mellin transform techniques to a Black–Scholes equation problem. Anal. Appl. 2007, 5, 1–16. [Google Scholar] [CrossRef]
- Li, T.R.; Rodrigo, M.R. Alternative results for option pricing and implied volatility in jump-diffusion models using Mellin transforms. Eur. J. Appl. Math. 2016, 28, 1–38. [Google Scholar] [CrossRef]
- Rodrigo, M.R.; Goard, J.M. Pricing of general European options on discrete dividend-paying assets with jump-diffusion dynamics. Appl. Math. Model. 2018, 64, 47–54. [Google Scholar] [CrossRef]
- Merton, R.C. Theory of rational option pricing. Bell J. Econ. Manag. Sci. 1973, 4, 141–183. [Google Scholar] [CrossRef] [Green Version]
- Carr, P.; Ellis, K.; Gupta, V. Static hedging of exotic options. J. Financ. 1998, 53, 1165–1190. [Google Scholar] [CrossRef]
- Brown, H.M.; Hobson, D.; Rogers, L.C.G. Robust hedging of barrier options. Math. Financ. 2001, 11, 285–314. [Google Scholar] [CrossRef]
- Andersen, L.; Andreasen, J.; Eliezer, D. Static replication of barrier options: Some general results. J. Comput. Financ. 2002, 5, 1–25. [Google Scholar] [CrossRef]
- Geman, H.; Yor, M. Pricing and hedging double-barrier options: A probabilistic approach. Math. Financ. 1996, 6, 365–378. [Google Scholar] [CrossRef] [Green Version]
- Kunitomo, N.; Ikeda, M. Pricing options with curved boundaries. Math. Financ. 1992, 2, 275–298. [Google Scholar] [CrossRef]
- Boyle, P.P.; Lau, S.H. Bumping up against the barrier with the binomial method. J. Deriv. 1994, 1, 6–14. [Google Scholar] [CrossRef]
- Ritchken, P. On pricing barrier options. J. Deriv. 1995, 3, 19–28. [Google Scholar] [CrossRef]
- Boyle, P.P.; Tian, Y. An explicit finite difference approach to the pricing of barrier options. Appl. Math. Financ. 1998, 5, 17–43. [Google Scholar] [CrossRef]
- Zvan, R.; Vetzal, K.R.; Forsyth, P.A. PDE methods for pricing barrier options. J. Econ. Dyn. Control. 2000, 24, 1563–1590. [Google Scholar] [CrossRef]
- Hui, C.H.; Lo, C.F. Valuing double-barrier options with time-dependent parameters by Fourier series expansion. Int. J. Appl. Math. 2007, 36, 1–5. [Google Scholar]
- Dorfleitner, G.; Schneider, P.; Hawlitschek, K.; Buch, A. Pricing options with Green’s functions when volatility, interest rate and barriers depend on time. Quant. Financ. 2008, 8, 119–133. [Google Scholar] [CrossRef]
- Pelsser, A. Pricing double-barrier options using Laplace transforms Financ. Stochastics 2004, 4, 95–105. [Google Scholar] [CrossRef]
- Davydov, D.; Linetsky, V. Pricing options on scalar diffusions: An eigenfunction expansion approach. J. Oper. Res. 2003, 51, 185–209. [Google Scholar] [CrossRef] [Green Version]
- Guardasoni, C.; Sanfelici, S. A boundary element approach to barrier option pricing in Black–Scholes framework. Int. J. Comput. Math. 2016, 93, 696–722. [Google Scholar] [CrossRef]
- Shen, S.-Y.; Hsiao, Y.-L. A boundary element formulation for the pricing of barrier options. Open J. Model. Simul. 2013, 1, 30–35. [Google Scholar] [CrossRef]
- Guardasoni, C.; Sanfelici, S. Fast numerical pricing of barrier options under stochastic volatility and jumps. SIAM J. Appl. Math. 2016, 76, 27–57. [Google Scholar] [CrossRef]
- Ballestra, L.V.; Pacelli, G.; Radi, D. A very efficient approach for pricing barrier options on an underlying described by the mixed fractional Brownian motion. Chaos Solitons Fractals 2016, 87, 240–248. [Google Scholar] [CrossRef]
- Buchen, P.; Konst, O. A new approach to pricing double-barrier options with arbitrary payoffs and exponential boundaries. Appl. Math. Financ. 2009, 16, 497–515. [Google Scholar] [CrossRef]
- Buchen, P. Image options and the road to barriers. Risk Mag. 2001, 14, 127–130. [Google Scholar]
- Björk, T. Arbitrage Theory in Continuous Time; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Black, F. The pricing of commodity contracts. J. Financ. Econ. 1976, 3, 167–179. [Google Scholar] [CrossRef]
- Rodrigo, M.R. Approximate ordinary differential equations for the optimal exercise boundaries of American put and call options. Eur. J. Appl. Math. 2014, 25, 27–43. [Google Scholar] [CrossRef] [Green Version]
- Guardasoni, C.; Rodrigo, M.R.; Sanfelici, S. A Mellin transform approach to barrier option pricing. IMA J. Manag. Math. 2020, 31, 49–67. [Google Scholar] [CrossRef]
- Myint-U, T.; Debnath, L. Partial Differential Equations for Scientists and Engineers; North Holland: Amsterdam, The Netherlands, 1987. [Google Scholar]
- Oberhettinger, O. Tables of Mellin Transforms; Springer: Berlin, Germany, 1974. [Google Scholar]
Type | Payoff Function |
---|---|
put | |
bear spread | |
call | |
bull spread | |
digital call | |
asset-or-nothing call | |
butterfly spread | , |
iron condor | , |
straddle | |
strip | |
strap | |
strangle |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigo, M.R. Pricing of Barrier Options on Underlying Assets with Jump-Diffusion Dynamics: A Mellin Transform Approach. Mathematics 2020, 8, 1271. https://doi.org/10.3390/math8081271
Rodrigo MR. Pricing of Barrier Options on Underlying Assets with Jump-Diffusion Dynamics: A Mellin Transform Approach. Mathematics. 2020; 8(8):1271. https://doi.org/10.3390/math8081271
Chicago/Turabian StyleRodrigo, Marianito R. 2020. "Pricing of Barrier Options on Underlying Assets with Jump-Diffusion Dynamics: A Mellin Transform Approach" Mathematics 8, no. 8: 1271. https://doi.org/10.3390/math8081271
APA StyleRodrigo, M. R. (2020). Pricing of Barrier Options on Underlying Assets with Jump-Diffusion Dynamics: A Mellin Transform Approach. Mathematics, 8(8), 1271. https://doi.org/10.3390/math8081271