Generalized Sasakian Space Forms Which Are Realized as Real Hypersurfaces in Complex Space Forms
Abstract
:1. Introduction
- (I)
- If , then M is locally congruent to one of the following:
- (i)
- a geodesic hypersphere of radius ; or
- (ii)
- a non-homogeneous real hypersurface in , with .
- (II)
- If , then M is locally congruent to one of the following:
- (i)
- a horosphere;
- (ii)
- a geodesic hypersphere of radius ;
- (iii)
- a tube of radius around a totally geodesic ; or
- (iv)
- a non-homogeneous real hypersurface in , with .
- (III)
- If , then M is locally congruent to one of the following:
- (i)
- a hyperplane ;
- (ii)
- a sphere of radius ; or
- (iii)
- a cylinder over a plane curve .
2. Preliminaries
2.1. Generalized Sasakian Space Forms
2.2. Real Hypersurfaces in Complex Space Forms
3. Real Hypersurfaces in or
- a horosphere in , with ;
- a geodesic hypersphere with in , with ;
- a geodesic hypersphere with in , with ; and
- a tube of radius around a complex hyperbolic hyperplane , which is a real hypersurface in with .
4. Real Hypersurfaces in
- when , ;
- when , ; and
- when ,
- when , ;
- when , ; and
- when , (which is not parallel to ).
- when , ;
- when , ; and
- when , (which is not parallel to ).
- hyperplanes : ; ;
- spheres : ; ; and
- cylinders over complete plane curves : for some function on ; .
Author Contributions
Funding
Conflicts of Interest
References
- Takagi, R. On homogeneous real hypersurfaces in a complex projective space. Osaka J. Math. 1973, 19, 495–506. [Google Scholar]
- Takagi, R. Real hypersurfaces in a complex projective space with constant principal curvatures. J. Math. Soc. Jpn. 1975, 15, 43–53. [Google Scholar] [CrossRef]
- Cecil, T.E.; Ryan, P.J. Focal sets and real hypersurfaces in complex projective space. Trans. Am. Math. Soc. 1982, 269, 481–499. [Google Scholar]
- Berndt, J. Real hypersurfaces with constant principal curvatures in complex hyperbolic space. J. Reine Angew. Math. 1989, 395, 132–141. [Google Scholar] [CrossRef]
- Kimura, M. Real hypersurfaces and complex submanifolds in complex projective space. Trans. Am. Math. Soc. 1986, 296, 137–149. [Google Scholar]
- Alegre, P.; Blair, D.E.; Carriazo, A. Generalized Sasakian-space-forms. Israel J. Math. 2004, 141, 157–183. [Google Scholar] [CrossRef]
- Blair, D.E. Riemannian Geometry of Contact and Symplectic Manifolds, 2nd ed.; Progr. Math. 203; Birkhäuser Boston, Inc.: Boston, MA, USA, 2010. [Google Scholar]
- Cho, J.T.; Ki, U.-H. Real hypersurfaces of complex projective space in terms of the Jacobi operators. Acta Math. Hungar. 1998, 80, 155–167. [Google Scholar] [CrossRef]
- Cho, J.T.; Vanhecke, L. Hopf hypersurfaces of D’Atri- and C-type in a complex space form. Rend. Mat. Appl. 1998, 18, 601–613. [Google Scholar]
- Montiel, S.; Romero, A. On some real hypersurfaces of a complex hyperbolic space. Geom. Dedicata 1986, 20, 245–261. [Google Scholar] [CrossRef]
- Okumura, M. On some real hypersurfaces of a complex projective space. Trans. Am. Math. Soc. 1975, 212, 355–364. [Google Scholar] [CrossRef]
- Pérez, J.D.; Suh, Y.J. Cho operators on real hypersurfaces in complex projective space. In Real and Complex Submanifolds; Springer Proc. Math. Stat., 106; Springer: Tokyo, Japan, 2014; pp. 109–116. [Google Scholar]
- Tashiro, Y.; Tachibana, S. On Fubinian and C-Fubinian manifolds. Kōdai Math. Sem. Rep. 1963, 15, 176–183. [Google Scholar] [CrossRef]
- Montiel, S. Real hypersurfaces of a complex hyperbolic space. J. Math. Soc. Jpn. 1985, 37, 515–535. [Google Scholar] [CrossRef]
- Niebergall, R.; Ryan, P.J. Real hypersurfaces of complex space forms. Math. Sci. Res. Inst. Publ 1997, 32, 233–305. [Google Scholar]
- Cho, J.T.; Kimura, M. η-umbilical hypersurfaces in ans . Mem. Fac. Sci. Eng. Shimane Univ. Ser. B Math. Sci. 2011, 44, 27–32. [Google Scholar]
- Cho, J.T.; Kimura, M. Real hypersurfaces with constant ϕ-sectional curvature in complex projective space. Differ. Geom. Appl. 2020, 68, 101573. [Google Scholar] [CrossRef]
- Kon, M. Pseudo-Einstein real hypersurfaces of complex space forms. J. Differ. Geom. 1979, 14, 339–354. [Google Scholar] [CrossRef]
- Kimura, M. Sectional curvatures of holomorphic planes on a real hypersurface in . Math. Ann. 1987, 276, 487–497. [Google Scholar] [CrossRef]
- Kim, H.S.; Ryan, P.J. A classification of pseudo-Einstein hypersurfaces in . Differ. Geom. Appl. 2008, 26, 106–112. [Google Scholar] [CrossRef]
- Ivey, T.A.; Ryan, P.J. Hopf hypersurfaces of small Hopf principal curvature in . Geom. Dedicata 2009, 141, 147–161. [Google Scholar] [CrossRef]
- Ryan, P.J. Homogeneity and some curvature conditions for hypersurfaces. Tôhoku Math. J. 1969, 2, 363–388. [Google Scholar] [CrossRef]
- Hartman, P.; Nirenberg, L. On spherical image maps whose Jacobians do not change sign. Am. J. Math. 1959, 81, 901–920. [Google Scholar] [CrossRef]
- Nomizu, K. On real hypersurfaces satisfying a certain condition on the curvature tensor. Tôhoku Math. J. 1968, 20, 46–59. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carriazo, A.; Cho, J.T.; Martín-Molina, V. Generalized Sasakian Space Forms Which Are Realized as Real Hypersurfaces in Complex Space Forms. Mathematics 2020, 8, 873. https://doi.org/10.3390/math8060873
Carriazo A, Cho JT, Martín-Molina V. Generalized Sasakian Space Forms Which Are Realized as Real Hypersurfaces in Complex Space Forms. Mathematics. 2020; 8(6):873. https://doi.org/10.3390/math8060873
Chicago/Turabian StyleCarriazo, Alfonso, Jong Taek Cho, and Verónica Martín-Molina. 2020. "Generalized Sasakian Space Forms Which Are Realized as Real Hypersurfaces in Complex Space Forms" Mathematics 8, no. 6: 873. https://doi.org/10.3390/math8060873
APA StyleCarriazo, A., Cho, J. T., & Martín-Molina, V. (2020). Generalized Sasakian Space Forms Which Are Realized as Real Hypersurfaces in Complex Space Forms. Mathematics, 8(6), 873. https://doi.org/10.3390/math8060873