 Previous Article in Journal
Eliminating Rank Reversal Problem Using a New Multi-Attribute Model—The RAFSI Method
Previous Article in Special Issue
Nontrivial Solutions for a System of Fractional q-Difference Equations Involving q-Integral Boundary Conditions

Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

# A Closed-Form Solution for the Boundary Value Problem of Gas Pressurized Circular Membranes in Contact with Frictionless Rigid Plates

1
School of Civil Engineering, Chongqing University, Chongqing 400045, China
2
Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing 400045, China
*
Author to whom correspondence should be addressed.
Mathematics 2020, 8(6), 1017; https://doi.org/10.3390/math8061017
Received: 8 June 2020 / Revised: 18 June 2020 / Accepted: 18 June 2020 / Published: 22 June 2020
(This article belongs to the Special Issue Mathematical Analysis and Boundary Value Problems)

:

## 1. Introduction

As structures or structural components, elastic membranes have played important roles in many fields. For instance, the vesicle membrane for targeted drug delivery  and cell membrane adhered onto substratum  are of practical importance in biological science, the electrostatically driven diaphragm membranes play important roles in micro-electro-mechanical systems (MEMS) [3,4], and the membrane structures in bulge tests [5,6,7] or blister tests [8,9,10,11,12,13,14] are designed for characterizing the mechanical properties of thin films or film/substrate interfaces.
On the other hand, if the uniform pressure is applied on one side of an initially flat peripherally fixed circular membrane, such that the circular membrane deflects axisymmetrically and comes into contact with a flat surface parallel to the initially flat circular membrane, then this is the so-called contact problem between circular membranes and rigid plates [26,27,28]. Such a contact problem is also reminiscent of the constrained blister test [11,12], but the debonding does not occur at the edge of the blistering film, because the edge of the blister is clamped. The contact and adhesion between the membrane and the rigid plate usually gained much attention [26,27]. Plaut et al.  analyzed the effect of the work of adhesion on the contact radius of a pressurized blister with a flat surface, where the thin blistering film was considered as a linear plate model (with stretching resistance neglected), as a nonlinear plate model (including both bending and stretching resistance), and as a membrane model (with bending resistance neglected), respectively. The linear plate models have the analytical solutions of the deflection and the total energy, while the other two had to be solved numerically using a shooting method due to the involved, somewhat intractable, nonlinear differential equations. Xu and Liechti  presented an analytical and experimental study on this contact problem and were intended to develop analytical solutions in order to predict the relationship among the contact radius, contact force, and the pressure for simplicity. In , this contact problem was formulated and its analytical solution was obtained based on the four made assumptions: (i) the flexural rigidity of the thin film is negligible and thus only the membrane stresses need to be considered; (ii) the gap g between the initially flat circular membrane and the constrained rigid plate is far from the radius of the circular membrane, and the rotation angle $θ$ of the deflected circular membrane is so small that $sin θ ≈ tan θ$ holds; (iii) a constant radial stress is assumed; (iv) a frictionless contact between the film and the rigid surface is assumed. While Wang et al.  reformulated this contact problem under the condition of abandoning the constant radial stress assumption adopted in  and presented a power series solution of the problem. The computational accuracy of the solution presented in  is indeed improved in comparison with that of the solution presented in .
In the present study, the membrane theory for uniform pressure loading developed by Fichter  is employed to develop the closed-form solution suitable for the static contact problem addressed here. In the following section, the membrane equations are established based on Fichter’s membrane theory, the power series method was employed to solve the boundary value problem of the resulting nonlinear differential equation, and a closed-form solution of the problem addressed here was finally presented. Then some important issues such as the effectiveness of the solution obtained in Section 2, as well as the difference between the solutions presented in this study and in , are discussed in Section 3. Concluding remarks are presented in Section 4.

## 2. Membrane Equation and Its Solution

Suppose that, an initially flat and unstressed, linearly elastic, circular isotropic membrane with Poisson’s ratio v, Young’s modulus E, thickness h, and radius a is clamped at its outer edge and then is pressurized on one side of the membrane by gas, such that it comes into contact with a frictionless flat surface of a rigid plate being parallel to the initially flat membrane, resulting in a restriction on the maximum deflection of the deformed circular membrane, as depicted in Figure 1, where the dash-dotted line denotes the geometrically middle plane of the circular membrane before deflection, q denotes the gas pressure acting on the surface of the circular membrane, r denotes the radial coordinate of the cylindrical coordinate system $( r , φ , w )$ (where the polar coordinate system $( r , φ )$ is located in the plane in which the geometrically middle plane of the initially flat circular membrane is located), w denotes the transverse coordinate of the system $( r , φ , w )$ as well as the transverse displacement of the deformed circular membrane, a is the radius of the circular membrane, b is the contact radius between the deformed circular membrane and the frictionless rigid plate, and g is the gap between the initially flat circular membrane and the frictionless rigid plate. The whole deformed circular membrane can be divided into two parts, that is, the central contact portion concerning the plane problem of axisymmetric deformation of the plane radial stretched or compressed membrane in the circular region 0 ≤ rb, and the outer non-contact portion concerning the large deflection problem of axisymmetric deformation of the membrane in the annular region bra. So, this contact problem should be addressed by the simultaneous solution to the two successive local problems, where the continuous conditions at r = b and the boundary conditions at r = a will be used for determining the special solutions of the stress and deflection of the deformed circular membrane. As for the problem before the deflected membrane comes into contact with the frictionless rigid plate, its solution may be found in .
Let us address firstly the large deflection problem of axisymmetric deformation of the membrane in the annular region bra, and take a piece of the deformed circular membrane with radius b ≤ ra, with a view of studying the static problem of equilibrium of this piece of the deformed circular membrane under the joint actions of the gas pressure q acting on the surface of the circular membrane, the membrane force $σ r h$ acting on the boundary r, and the reaction force $π b 2 q$ from the frictionless rigid plate, as depicted in Figure 2, where $σ r$ represents the radial stress and $θ$ represents the slope angle of the deflected circular membrane. Obviously, right here there are two vertical forces acting on the deformed circular membrane with radius r (bra), i.e., the total vertical force $2 π r σ r h sin θ$ which is produced by the membrane force $σ r h$, and the total vertical force which is produced by the gas pressure q and is usually approximated as $π r 2 q$ . So, the usually so-called out-of-plane equilibrium equation may approximately be written as
$2 π r σ r h sin θ = ( π r 2 − π b 2 ) q ,$
where:
$sin θ ≅ tan θ = − d w d r .$
Substituting Equation (2) into Equation (1), one has
$2 r σ r h d w d r = − ( r 2 − b 2 ) q .$
The so-called in-plane equilibrium equation may approximately be written as 
$σ t h = d d r ( r σ r h ) − q r d w d r ,$
where $σ t$ is the circumferential stress. The relations between strain and displacement for the large deflection problem are
$e r = d u d r + 1 2 ( d w d r ) 2$
and
$e t = u r ,$
where $e r$ denotes the radial strain, $e t$ denotes the circumferential strain, and u denotes the radial displacement. The relations between stress and strain are
$σ r = E 1 − ν 2 ( e r + ν e t )$
and
$σ t = E 1 − ν 2 ( e t + ν e r ) .$
Substitute Equations (5) and (6) into Equations (7) and (8)
$σ r = E 1 − ν 2 [ d u d r + 1 2 ( d w d r ) 2 + ν u r ]$
and
$σ t = E 1 − ν 2 [ u r + ν d u d r + ν 2 ( d w d r ) 2 ] .$
From Equations (4), (9), (10), one has
$u r = 1 E h ( σ t h − ν σ r h ) = 1 E h [ d d r ( r σ r h ) − ν σ r h − q r d w d r ] .$
If we substitute u of Equation (11) into Equation (9), we can obtain the compatibility equation
$3 r d d r ( σ r h ) + r 2 d 2 d r 2 ( σ r h ) + E h 2 ( d w d r ) 2 − [ r d 2 w d r 2 + ( ν + 2 ) d w d r ] q r = 0 .$
Furthermore, let us address the plane problem of axisymmetric deformation of the plane radial stretched or compressed circular membrane in the central contact region 0rb, where the radial displacement at r = b is denoted by $u ( b )$. It is obvious that $d w / d r = 0$ when 0rb because the slope angle of the membrane is zero in this region, i.e., $θ = 0$ when 0rb. So, after substituting $d w / d r = 0$ into Equations (5), (9) and (10), it may be found that
$e r = d u d r ,$
$σ r = E 1 − ν 2 ( d u d r + ν u r ) ,$
and
$σ t = E 1 − ν 2 ( u r + ν d u d r ) .$
Substituting Equations (14) and (15) into Equation (4) and using $d w / d r = 0$, we obtain an equation containing only the radial displacement u
$r 2 d 2 u d r 2 + r d u d r − u = 0 .$
Obviously Equation (16) satisfies the form of the Euler equation, and it is not difficult for us to obtain its general solution $u ( r ) = C 1 r + C 2 / r$, where $C 1$ and $C 2$ are two undetermined constants. Now let us address the conditions to determine $C 1$ and $C 2$, or the conditions that the special solution of Equation (16) must satisfy. According to the characteristics of the physical phenomenon of axisymmetric deformation of the plane radial stretched or compressed circular membrane in the central contact region 0 ≤ rb, it is not difficult for us to understand that the radial displacement is equal to zero at the center of the circular membrane, that is
Moreover, at r = b, the radial displacement is denoted by $u ( b )$, that is
Therefore, from Equation (17), we know that $C 2$ must be equal to zero to make sure that the value of the radial displacement u is finite at r = 0, and further, from Equation (18), we can obtain $C 1 = u ( b ) / b$. Then, the special solution of Equation (16) may be written as
$u ( r ) r = u ( b ) b .$
Substituting Equation (19) into Equations (6), (13)–(15), it may finally be found that
$e r = e t = u ( b ) b$
and
$σ r = σ t = E 1 − ν u ( b ) b .$
Equations (20) and (21) indicate that the strain and stress are uniformly distributed in the central contact region 0 ≤ rb.
Now, let us address the boundary conditions at r = a and the continuous conditions at r = b for the large deflection problem of axisymmetric deformation of the membrane in the annular region b ≤ ra. The boundary conditions at r = a are
and
The continuous conditions at r = b are
and
where and represent the values of various variables on the two sides of the inter-connecting circle of r = b, and the subscript A refers to the annular region bra, while the subscript B refers to the circular region 0 ≤ rb. In addition, from the above discussion on the plane problem, we know that $d w / d r = 0$ at r = b.
We introduce the following nondimensional variables
Transform Equations (3), (12), (22)–(26) into
$2 x S r d W d x + ( x 2 − α 2 ) Q = 0 ,$
$3 x d S r d x + x 2 d 2 S r d x 2 + 1 2 ( d W d x ) 2 − [ x d 2 W d x 2 + ( ν + 2 ) d W d x ] Q x = 0 ,$
and
Eliminating $d W / d x$ from Equations (28) and (29), a differential equation which contains only $S r$ is obtained
$8 S r 2 x 4 d 2 S r d x 2 + 24 S r 2 x 3 d S r d x + ( x 2 − α 2 ) 2 Q 2 − 4 Q 2 x 5 d S r d x + 4 Q 2 α 2 x 3 d S r d x − 4 S r Q 2 α 2 ν x 2 + 4 S r Q 2 ν x 4 − 4 S r Q 2 α 2 x 2 + 12 Q 2 S r x 4 = 0$
Letting $β = ( 1 + α ) / 2$ and expanding $S r$ and $W$ into the power series of the $x − β$, i.e., letting
$S r = ∑ i = 0 ∞ c i ( x − β ) i$
and
$W = ∑ i = 0 ∞ d i ( x − β ) i .$
After substituting Equation (36) into Equation (35), the coefficients $c i ( i = 2 , 3 , 4 , … )$ can be expressed into the polynomial of $c 0$ and $c 1$, which are shown in Appendix A, and after that, substituting Equations (36) and (37) into Equation (28), the coefficients $d i ( i = 1 , 2 , 3 , … )$ can also be expressed into the polynomial of $c 0$ and $c 1$, which are shown in Appendix B. There still is another undetermined constant $d 0$, besides the undetermined constant $c 0$ and $c 1$.
All the undetermined constants can be determined by applying the boundary conditions and continuous conditions. From Equations (36) and (37), Equation (30) gives
$( 1 − ν ) ∑ i = 0 ∞ c i ( 1 − β ) i + ∑ i = 1 ∞ i c i ( 1 − β ) i − 1 − Q ∑ i = 1 ∞ i d i ( 1 − β ) i − 1 = 0 .$
From Equation (37), Equations (31) and (32) give
$∑ i = 0 ∞ d i ( 1 − β ) i = 0$
and
$∑ i = 0 ∞ d i ( α − β ) i = g a .$
From Equations (36) and (37), Equation (33) gives
$( 1 − ν ) ∑ i = 0 ∞ c i ( α − β ) i + α ∑ i = 1 ∞ i c i ( α − β ) i − 1 − Q α ∑ i = 1 ∞ i d i ( α − β ) i − 1 = u ( b ) b .$
From Equation (36), Equation (34) gives
$∑ i = 0 ∞ c i ( α − β ) i = 1 1 − ν u ( b ) b .$
Equation (40) minus Equation (39) yields
$∑ i = 1 ∞ d i ( α − β ) i - ∑ i = 1 ∞ d i ( 1 − β ) i = g a .$
Eliminating the $u ( b ) / b$ from Equations (41) and (42), one has
$∑ i = 1 ∞ i c i ( α − β ) i − 1 − Q ∑ i = 1 ∞ i d i ( α − β ) i − 1 = 0 .$
Therefore, for the given problem where a, h, g, v, E, and q are known in advance, the undetermined constants $c 0$, $c 1$ and the contact radius b can be determined by Equations (38), (43), and (44). So, with the known $c 0$, $c 1$, and b, all the coefficients $c i ( i = 2 , 3 , 4 , … )$ and $d i ( i = 1 , 2 , 3 , … )$ can be determined, and further, with the known $d i ( i = 1 , 2 , 3 , … )$, the undetermined constant $d 0$ can be determined by Equation (39). Thus, the problem addressed here can be solved.

## 3. Results and Discussion

Let us firstly see whether there are any errors during the derivation in Section 2. Obviously, before and after the moment that the deformed circular membrane just touched the frictionless rigid plate, the shape of the deformed circular membrane changes very little, and the problem after the deformed circular membrane comes into contact with the frictionless rigid plate is the contact problem addressed in Section 2, while the problem before the deformed circular membrane touches the frictionless rigid plate is exactly the one dealt with in . So, the solution presented in  could be used for identifying the effectiveness of the closed-form solution presented in Section 2.
To this end, let us consider a numerical example of a circular rubber membrane with a = 10 mm, h = 1 mm, E = 7.84 MPa, and v = 0.47. The maximum deflection of the membrane is about 2.495 mm when the circular rubber membrane is subjected to a gas pressure of q = 0.0554 MPa, which is obtained by using the solution presented in . Suppose that, the gap g between the initially flat circular rubber membrane and the frictionless rigid plate is equal to 2.5 mm, then the contact radius b between the deformed circular membrane and the frictionless rigid plate is about 0.001 mm when the circular membrane is subjected to a gas pressure of q = 0.0556 MPa, which is obtained by using the solution presented in Section 2. Figure 3 shows the deflection curve profiles, i.e., the variation of the deflection w with the radius r, in which the solid line represents the results obtained by the solution presented in Section 2, and the dash-dotted line by the solution presented in . From Figure 3, it may be seen that the two profiles are very close to each other, which indicates that the closed-form solution presented in Section 2 is, to some extent, reliable.
Now, let us address the difference between the solution presented in Section 2, which applies to the gas pressure loading, and the solution presented in , which applies to the gravity loading. Suppose that, the gap g between the initially flat circular rubber membrane and the frictionless rigid plate takes 0.5 and 2.5 mm, respectively, and the contact radius b between the deformed circular membrane and the frictionless rigid plate is always 4 mm whether the gap g takes 0.5 or 2.5 mm. The calculated results by the solution presented in Section 2 are q = 0.001322 MPa for g = 0.5 mm and q = 0.1576 MPa for g = 2.5 mm, respectively. While the calculated results by the solution presented in  are q = 0.001327 MPa for g = 0.5 mm and q = 0.1654 MPa for g = 2.5 mm, respectively. Figure 4 shows the variation of w with r, while Figure 5 shows the variation of $σ r$ with r, in which the solid line represents the results calculated by the solution presented in Section 2, and the dash-dotted line by the solution presented in . From Figure 4, it may be seen that when g = 0.5 mm and b = 4 mm, the two deflection curves are very close to each other, while when g = 2.5 mm and b = 4 mm, there is clear difference in the shape of the two deflection curves. This difference is resulted from the improvement of the in-plane equilibrium equation. In this study, we employed the in-plane equilibrium equation presented in  (i.e., Equation (4)), which applies to the gas pressure loading, while the in-plane equilibrium equation employed in  applies to the gravity loading. In Figure 5, the radial stress $σ r$, which is calculated by the solutions presented here (the solid lines) and presented in  (the dash-dotted lines), respectively, is about 0.0382 and 0.0377 MPa at r = 4 mm and 0.0336 and 0.0338 MPa at r = 10 mm when g = 0.5 mm, and is about 1.0658 and 0.9433 MPa at r = 4 mm and 0.6262 and 0.8466 MPa at r = 10 mm when g = 2.5 mm. The maximum relative error is about 35%, while the allowable error for the precision measurement, instrument design, and the civil engineering is usually less than 1%, 3%, and 15%, respectively.
From Figure 4 and Figure 5, we may see that, when the gap g is relatively small, the difference in deflection and stress of the two different solutions, which apply to the gas pressure loading and gravity loading, is very small and could be negligible, while when the gap g is relatively large, the difference in deflection and stress of the two solutions must be taken seriously. This difference reminds us that the solution should be chosen to use according to the actual loading pattern, otherwise, the inappropriate use of solutions could result in too much loss of computational accuracy.

## 4. Concluding Remarks

In this study, the static problem of equilibrium of frictionless contact between an axisymmetric deflected circular membrane and a rigid plate was dealt with analytically, and the closed-form solution of the problem, which applies to the gas pressure loading, was presented. The following main conclusions can be drawn.
The solution obtained under gravity loading is still applicable to the gas pressurized circular membrane with a relatively small deflection, but will gradually lose its effectiveness along with the increase of the deflection of membranes.
The solution presented in this study was obtained under gas pressure loading, and therefore it is more suitable for the gas pressurized circular membrane with a relatively large deflection in comparison with the solution presented in , which was obtained under gravity loading.
The closed-form solution presented in this study can be used to analyze or interpret the constrained pressurized blister tests, such as to study the effect of the attractive forces between the blistering thin film and the rigid surface on the radius of the circular contact area, or the relationship between the applied gas pressure, adhesion forces, and the contact radius.

## Author Contributions

Conceptualization, J.-Y.S. and X.-T.H.; methodology, D.M. and J.-Y.S.; writing—original draft preparation, D.M. and Z.-H.Z.; writing—review and editing, J.-Y.S. and X.-T.H.; visualization, D.M. and Z.-H.Z.; funding acquisition, J.-Y.S. All authors have read and agreed to the published version of the manuscript.

## Funding

This research was funded by the National Natural Science Foundation of China (Grant No. 11772072).

## Conflicts of Interest

The authors declare no conflict of interest.

## Appendix A

$c 2 = − 8 Q 2 β 4 c 0 − 4 Q 2 β 3 e c 1 + 4 Q 2 β 2 e ν c 0 + 4 Q 2 β 2 e c 0 + 24 β 3 c 0 2 c 1 + Q 2 e 2 16 β 4 c 0 2 ,$
$c 3 = − 1 96 β 5 c 0 4 ( 8 Q 4 β 4 e c 0 − 4 Q 4 β 3 e 2 c 1 + 4 Q 4 β 2 e 2 ν c 0 − 32 Q 2 β 5 c 0 2 c 1 + 16 Q 2 β 4 e c 0 c 1 2 + 16 Q 2 β 4 ν c 0 3 − 8 Q 2 β 3 e ν c 0 2 c 1 + 4 Q 4 β 2 e 2 c 0 − 32 Q 2 β 4 c 0 3 + 48 Q 2 β 3 e c 0 2 c 1 − 40 Q 2 β 2 e ν c 0 3 − 40 Q 2 β 2 e c 0 3 − 192 β 3 c 0 4 c 1 + Q 4 e 3 + 8 Q 2 β 2 e c 0 2 − 4 Q 2 β e 2 c 0 c 1 − 14 Q 2 e 2 c 0 2 ) ,$
$c 4 = − 1 768 β 8 c 0 6 ( 8 Q 6 β 6 e 2 c 0 − 4 Q 6 β 5 e 3 c 1 + 4 Q 6 β 4 e 3 ν c 0 + 96 Q 4 β 8 c 0 3 − 176 Q 4 β 7 e c 0 2 c 1 + 64 Q 4 β 6 e 2 c 0 c 1 2 + 80 Q 4 β 6 e ν c 0 3 − 64 Q 4 β 5 e 2 ν c 0 2 c 1 + 8 Q 4 β 4 e 2 ν 2 c 0 3 + 192 Q 2 β 8 c 0 3 c 1 2 − 96 Q 2 β 7 e c 0 2 c 1 3 − 64 Q 2 β 7 ν c 0 4 c 1 + 32 Q 2 β 6 e ν c 0 3 c 1 2 + 4 Q 6 β 4 e 3 c 0 − 48 Q 4 β 6 e c 0 3 + 32 Q 4 β 5 e 2 c 0 2 c 1 − 64 Q 4 β 4 e 2 ν c 0 3 + 448 Q 2 β 7 c 0 4 c 1 − 416 Q 2 β 6 e c 0 3 c 1 2 − 192 Q 2 β 6 ν c 0 5 + 160 Q 2 β 5 e ν c 0 4 c 1 − 72 Q 4 β 4 e 2 c 0 3 + 288 Q 2 β 6 c 0 5 − 592 Q 2 β 5 e c 0 4 c 1 + 432 Q 2 β 4 e ν c 0 5 + Q 6 β 2 e 4 + 28 Q 4 β 4 e 2 c 0 2 − 20 Q 4 β 3 e 3 c 0 c 1 + 6 Q 4 β 2 e 3 ν c 0 2 + 32 Q 2 β 6 c 0 4 − 64 Q 2 β 5 e c 0 3 c 1 + 24 Q 2 β 4 e 2 c 0 2 c 1 2 + 432 Q 2 β 4 e c 0 5 + 1920 β 5 c 0 6 c 1 − 18 Q 4 β 2 e 3 c 0 2 − 160 Q 2 β 4 e c 0 4 + 112 Q 2 β 3 e 2 c 0 3 c 1 + 188 Q 2 β 2 e 2 c 0 4 + Q 4 e 4 c 0 ) ,$
$c 5 = − 1 7680 β 9 c 0 8 ( 8 Q 8 β 6 e 3 c 0 − 4 Q 8 β 5 e 4 c 1 + 4 Q 8 β 4 e 4 ν c 0 + 416 Q 6 β 8 e c 0 3 − 560 Q 6 β 7 e 2 c 0 2 c 1 + 176 Q 6 β 6 e 3 c 0 c 1 2 + 352 Q 6 β 6 e 2 ν c 0 3 − 232 Q 6 β 5 e 3 ν c 0 2 c 1 + 64 Q 6 β 4 e 3 ν 2 c 0 3 − 2048 Q 4 β 9 c 0 4 c 1 + 2880 Q 4 β 8 e c 0 3 c 1 2 + 448 Q 4 β 8 ν c 0 5 − 928 Q 4 β 7 e 2 c 0 2 c 1 3 − 1568 Q 4 β 7 e ν c 0 4 c 1 + 864 Q 4 β 6 e 2 ν c 0 3 c 1 2 + 128 Q 4 β 6 e ν 2 c 0 5 − 112 Q 4 β 5 e 2 ν 2 c 0 4 c 1 − 1536 Q 2 β 9 c 0 4 c 1 3 + 768 Q 2 β 8 e c 0 3 c 1 4 + 384 Q 2 β 8 ν c 0 5 c 1 2 − 192 Q 2 β 7 e ν c 0 4 c 1 3 + 4 Q 8 β 4 e 4 c 0 + 128 Q 6 β 6 e 2 c 0 3 − 88 Q 6 β 5 e 3 c 0 2 c 1 − 1088 Q 4 β 8 c 0 5 + 3680 Q 4 β 7 e c 0 4 c 1 − 1824 Q 4 β 6 e 2 c 0 3 c 1 2 − 1536 Q 4 β 6 e ν c 0 5 + 2080 Q 4 β 5 e 2 ν c 0 4 c 1 − 224 Q 4 β 4 e 2 ν 2 c 0 5 − 5760 Q 2 β 8 c 0 5 c 1 2 + 4416 Q 2 β 7 e c 0 4 c 1 3 + 1536 Q 2 β 7 ν c 0 6 c 1 − 1152 Q 2 β 6 e ν c 0 5 c 1 2 − 64 Q 6 β 4 e 3 c 0 3 + 352 Q 4 β 6 e c 0 5 + 288 Q 4 β 5 e 2 c 0 4 c 1 + 944 Q 4 β 4 e 2 ν c 0 5 − 6528 Q 2 β 7 c 0 6 c 1 + 9024 Q 2 β 6 e c 0 5 c 1 2 + 2496 Q 2 β 6 ν c 0 7 − 2784 Q 2 β 5 e ν c 0 6 c 1 + Q 8 β 2 e 5 + 100 Q 6 β 4 e 3 c 0 2 − 64 Q 6 β 3 e 4 c 0 c 1 + 36 Q 6 β 2 e 4 ν c 0 2 + 352 Q 4 β 6 e c 0 4 − 720 Q 4 β 5 e 2 c 0 3 c 1 + 320 Q 4 β 4 e 3 c 0 2 c 1 2 + 152 Q 4 β 4 e 2 ν c 0 4 + 1168 Q 4 β 4 e 2 c 0 5 − 112 Q 4 β 3 e 3 ν c 0 3 c 1 − 384 Q 2 β 7 c 0 5 c 1 + 576 Q 2 β 6 e c 0 4 c 1 2 − 3264 Q 2 β 6 c 0 7 − 192 Q 2 β 5 e 2 c 0 3 c 1 3 + 8160 Q 2 β 5 e c 0 6 c 1 − 5376 Q 2 β 4 e ν c 0 7 − 712 Q 4 β 4 e 2 c 0 4 + 736 Q 4 β 3 e 3 c 0 3 c 1 − 224 Q 4 β 2 e 3 ν c 0 4 − 768 Q 2 β 6 c 0 6 + 2304 Q 2 β 5 e c 0 5 c 1 − 1152 Q 2 β 4 e 2 c 0 4 c 1 2 − 5376 Q 2 β 4 e c 0 7 − 23040 β 5 c 0 8 c 1 + 252 Q 4 β 2 e 3 c 0 4 + 2784 Q 2 β 4 e c 0 6 − 2544 Q 2 β 3 e 2 c 0 5 c 1 + 5 Q 6 e 5 c 0 + 32 Q 4 β 2 e 3 c 0 3 − 22 Q 4 β e 4 c 0 2 c 1 − 2736 Q 2 β 2 e 2 c 0 6 − 44 Q 4 e 4 c 0 3 ) ,$
$c 6 = − 1 184320 β 12 c 0 10 ( 16 Q 10 β 8 e 4 c 0 − 8 Q 10 β 7 e 5 c 1 + 8 Q 10 β 6 e 5 ν c 0 + 2432 Q 8 β 10 e 2 c 0 3 − 2880 Q 8 β 9 e 3 c 0 2 c 1 + 832 Q 8 β 8 e 4 c 0 c 1 2 + 2176 Q 8 β 8 e 3 ν c 0 3 − 1280 Q 8 β 7 e 4 ν c 0 2 c 1 + 464 Q 8 β 6 e 4 ν 2 c 0 3 + 11520 Q 6 β 12 c 0 5 − 44416 Q 6 β 11 e c 0 4 c 1 + 40320 Q 6 β 10 e 2 c 0 3 c 1 2 + 16000 Q 6 β 10 e ν c 0 5 − 10496 Q 6 β 9 e 3 c 0 2 c 1 3 − 34176 Q 6 β 9 e 2 ν c 0 4 c 1 + 14592 Q 6 β 8 e 3 ν c 0 3 c 1 2 + 5120 Q 6 β 8 e 2 ν 2 c 0 5 − 4960 Q 6 β 7 e 3 ν 2 c 0 4 c 1 + 224 Q 6 β 6 e 3 ν 3 c 0 5 + 74240 Q 4 β 12 c 0 5 c 1 2 − 93952 Q 4 β 11 e c 0 4 c 1 3 − 20992 Q 4 β 11 ν c 0 6 c 1 + 28416 Q 4 β 10 e 2 c 0 3 c 1 4 + 51968 Q 4 β 10 e ν c 0 5 c 1 2 + 1024 Q 4 β 10 ν 2 c 0 7 − 24576 Q 4 β 9 e 2 ν c 0 4 c 1 3 − 4864 Q 4 β 9 e ν 2 c 0 6 c 1 + 2944 Q 4 β 8 e 2 ν 2 c 0 5 c 1 2 + 30720 Q 2 β 12 c 0 5 c 1 4 − 15360 Q 2 β 11 e c 0 4 c 1 5 − 6144 Q 2 β 11 ν c 0 6 c 1 3 + 3072 Q 2 β 10 e ν c 0 5 c 1 4 + 8 Q 10 β 6 e 5 c 0 + 1504 Q 8 β 8 e 3 c 0 3 − 880 Q 8 β 7 e 4 c 0 2 c 1 + 560 Q 8 β 6 e 4 ν c 0 3 − 10240 Q 6 β 10 e c 0 5 + 16960 Q 6 β 9 e 2 c 0 4 c 1 − 5952 Q 6 β 8 e 3 c 0 3 c 1 2 − 16768 Q 6 β 8 e 2 ν c 0 5 + 14496 Q 6 β 7 e 3 ν c 0 4 c 1 − 5216 Q 6 β 6 e 3 ν 2 c 0 5 + 113152 Q 4 β 11 c 0 6 c 1 − 235520 Q 4 β 10 e c 0 5 c 1 2 − 20224 Q 4 β 10 ν c 0 7 + 97664 Q 4 β 9 e 2 c 0 4 c 1 3 + 116864 Q 4 β 9 e ν c 0 6 c 1 − 94336 Q 4 β 8 e 2 ν c 0 5 c 1 2 − 8192 Q 4 β 8 e ν 2 c 0 7 + 10432 Q 4 β 7 e 2 ν 2 c 0 6 c 1 + 159744 Q 2 β 11 c 0 6 c 1 3 − 110592 Q 2 β 10 e c 0 5 c 1 4 − 32256 Q 2 β 10 ν c 0 7 c 1 2 + 22272 Q 2 β 9 e ν c 0 6 c 1 3 + 96 Q 8 β 6 e 4 c 0 3 − 11584 Q 6 β 8 e 2 c 0 5 + 11616 Q 6 β 7 e 3 c 0 4 c 1 − 4736 Q 6 β 6 e 3 ν c 0 5 + 33280 Q 4 β 10 c 0 7 − 135424 Q 4 β 9 e c 0 6 c 1 + 70656 Q 4 β 8 e 2 c 0 5 c 1 2 + 54656 Q 4 β 8 e ν c 0 7 − 106624 Q 4 β 7 e 2 ν c 0 6 c 1 + 10048 Q 4 β 6 e 2 ν 2 c 0 7 + 285696 Q 2 β 10 c 0 7 c 1 2 − 302592 Q 2 β 9 e c 0 6 c 1 3 − 62976 Q 2 β 9 ν c 0 8 c 1 + 63744 Q 2 β 8 e ν c 0 7 c 1 2 + 2 Q 10 β 4 e 6 + 576 Q 8 β 6 e 4 c 0 2 − 336 Q 8 β 5 e 5 c 0 c 1 + 244 Q 8 β 4 e 5 ν c 0 2 + 6304 Q 6 β 8 e 2 c 0 4 − 11328 Q 6 β 7 e 3 c 0 3 c 1 + 4464 Q 6 β 6 e 4 c 0 2 c 1 2 + 3824 Q 6 β 6 e 3 ν c 0 4 + 704 Q 6 β 6 e 3 c 0 5 − 3232 Q 6 β 5 e 4 ν c 0 3 c 1 + 280 Q 6 β 4 e 4 ν 2 c 0 4 + 4352 Q 4 β 10 c 0 6 − 22528 Q 4 β 9 e c 0 5 c 1 + 28992 Q 4 β 8 e 2 c 0 4 c 1 2 + 3200 Q 4 β 8 e ν c 0 6 − 5120 Q 4 β 8 e c 0 7 − 10368 Q 4 β 7 e 3 c 0 3 c 1 3 − 7808 Q 4 β 7 e 2 ν c 0 5 c 1 − 41856 Q 4 β 7 e 2 c 0 6 c 1 + 3680 Q 4 β 6 e 3 ν c 0 4 c 1 2 − 29632 Q 4 β 6 e 2 ν c 0 7 + 9216 Q 2 β 10 c 0 6 c 1 2 − 12288 Q 2 β 9 e c 0 5 c 1 3 + 208896 Q 2 β 9 c 0 8 c 1 + 3840 Q 2 β 8 e 2 c 0 4 c 1 4 − 390144 Q 2 β 8 e c 0 7 c 1 2 − 72960 Q 2 β 8 ν c 0 9 + 99456 Q 2 β 7 e ν c 0 8 c 1 + 144 Q 8 β 4 e 5 c 0 2 − 5344 Q 6 β 6 e 3 c 0 4 + 4320 Q 6 β 5 e 4 c 0 3 c 1 − 3296 Q 6 β 4 e 4 ν c 0 4 − 24064 Q 4 β 8 e c 0 6 + 66496 Q 4 β 7 e 2 c 0 5 c 1 − 38880 Q 4 β 6 e 3 c 0 4 c 1 2 − 13792 Q 4 β 6 e 2 ν c 0 6 − 39680 Q 4 β 6 e 2 c 0 7 + 13376 Q 4 β 5 e 3 ν c 0 5 c 1 + 32256 Q 2 β 9 c 0 7 c 1 − 66816 Q 2 β 8 e c 0 6 c 1 2 + 88320 Q 2 β 8 c 0 9 + 28416 Q 2 β 7 e 2 c 0 5 c 1 3 − 253056 Q 2 β 7 e c 0 8 c 1 + 153600 Q 2 β 6 e ν c 0 9 − 1616 Q 6 β 4 e 4 c 0 4 + 29120 Q 4 β 6 e 2 c 0 6 − 40032 Q 4 β 5 e 3 c 0 5 c 1 + 12752 Q 4 β 4 e 3 ν c 0 6 + 31488 Q 2 β 8 c 0 8 − 127488 Q 2 β 7 e c 0 7 c 1 + 81216 Q 2 β 6 e 2 c 0 6 c 1 2 + 153600 Q 2 β 6 e c 0 9 + 645120 β 7 c 0 10 c 1 + 32 Q 8 β 2 e 6 c 0 + 648 Q 6 β 4 e 4 c 0 3 − 504 Q 6 β 3 e 5 c 0 2 c 1 + 100 Q 6 β 2 e 5 ν c 0 3 + 960 Q 4 β 6 e 2 c 0 5 − 1920 Q 4 β 5 e 3 c 0 4 c 1 + 816 Q 4 β 4 e 4 c 0 3 c 1 2 − 6048 Q 4 β 4 e 3 c 0 6 − 99456 Q 2 β 6 e c 0 8 + 113472 Q 2 β 5 e 2 c 0 7 c 1 − 504 Q 6 β 2 e 5 c 0 3 − 3456 Q 4 β 4 e 3 c 0 5 + 3000 Q 4 β 3 e 4 c 0 4 c 1 + 88128 Q 2 β 4 e 2 c 0 8 + 2856 Q 4 β 2 e 4 c 0 5 + 11 Q 6 e 6 c 0 2 ) ,$
$c 7 = − 1 1290240 β 13 c 0 12 ( 8 Q 12 β 8 e 5 c 0 − 4 Q 12 β 7 e 6 c 1 + 4 Q 12 β 6 e 6 ν c 0 + 3008 Q 10 β 10 e 3 c 0 3 − 3328 Q 10 β 9 e 4 c 0 2 c 1 + 912 Q 10 β 8 e 5 c 0 c 1 2 + 2800 Q 10 β 8 e 4 ν c 0 3 − 1544 Q 10 β 7 e 5 ν c 0 2 c 1 + 640 Q 10 β 6 e 5 ν 2 c 0 3 + 54144 Q 8 β 12 e c 0 5 − 137152 Q 8 β 11 e 2 c 0 4 c 1 + 101504 Q 8 β 10 e 3 c 0 3 c 1 2 + 69440 Q 8 β 10 e 2 ν c 0 5 − 23232 Q 8 β 9 e 4 c 0 2 c 1 3 − 112064 Q 8 β 9 e 3 ν c 0 4 c 1 + 40576 Q 8 β 8 e 4 ν c 0 3 c 1 2 + 25760 Q 8 β 8 e 3 ν 2 c 0 5 − 20320 Q 8 β 7 e 4 ν 2 c 0 4 c 1 + 2480 Q 8 β 6 e 4 ν 3 c 0 5 − 294912 Q 6 β 13 c 0 6 c 1 + 783872 Q 6 β 12 e c 0 5 c 1 2 + 52992 Q 6 β 12 ν c 0 7 − 599808 Q 6 β 11 e 2 c 0 4 c 1 3 − 405376 Q 6 β 11 e ν c 0 6 c 1 + 140800 Q 6 β 10 e 3 c 0 3 c 1 4 + 559232 Q 6 β 10 e 2 ν c 0 5 c 1 2 + 35840 Q 6 β 10 e ν 2 c 0 7 − 195840 Q 6 β 9 e 3 ν c 0 4 c 1 3 − 115648 Q 6 β 9 e 2 ν 2 c 0 6 c 1 + 69568 Q 6 β 8 e 3 ν 2 c 0 5 c 1 2 + 3776 Q 6 β 8 e 2 ν 3 c 0 7 − 4064 Q 6 β 7 e 3 ν 3 c 0 6 c 1 − 681984 Q 4 β 13 c 0 6 c 1 3 + 815616 Q 4 β 12 e c 0 5 c 1 4 + 206336 Q 4 β 12 ν c 0 7 c 1 2 − 237312 Q 4 β 11 e 2 c 0 4 c 1 5 − 441088 Q 4 β 11 e ν c 0 6 c 1 3 − 12800 Q 4 β 11 ν 2 c 0 8 c 1 + 192000 Q 4 β 10 e 2 ν c 0 5 c 1 4 + 40448 Q 4 β 10 e ν 2 c 0 7 c 1 2 − 20864 Q 4 β 9 e 2 ν 2 c 0 6 c 1 3 − 184320 Q 2 β 13 c 0 6 c 1 5 + 92160 Q 2 β 12 e c 0 5 c 1 6 + 30720 Q 2 β 12 ν c 0 7 c 1 4 − 15360 Q 2 β 11 e ν c 0 6 c 1 5 + 4 Q 12 β 6 e 6 c 0 + 2336 Q 10 β 8 e 4 c 0 3 − 1280 Q 10 β 7 e 5 c 0 2 c 1 + 1032 Q 10 β 6 e 5 ν c 0 3 + 9408 Q 8 β 10 e 2 c 0 5 − 20224 Q 8 β 9 e 3 c 0 4 c 1 + 8512 Q 8 β 8 e 4 c 0 3 c 1 2 − 10112 Q 8 β 8 e 3 ν c 0 5 + 4928 Q 8 β 7 e 4 ν c 0 4 c 1 − 7552 Q 8 β 6 e 4 ν 2 c 0 5 − 133632 Q 6 β 12 c 0 7 + 750080 Q 6 β 11 e c 0 6 c 1 − 847616 Q 6 β 10 e 2 c 0 5 c 1 2 − 262016 Q 6 β 10 e ν c 0 7 + 257280 Q 6 β 9 e 3 c 0 4 c 1 3 + 806528 Q 6 β 9 e 2 ν c 0 6 c 1 − 436864 Q 6 β 8 e 3 ν c 0 5 c 1 2 − 118208 Q 6 β 8 e 2 ν 2 c 0 7 + 162368 Q 6 β 7 e 3 ν 2 c 0 6 c 1 − 6560 Q 6 β 6 e 3 ν 3 c 0 7 − 1848320 Q 4 β 12 c 0 7 c 1 2 + 3128320 Q 4 β 11 e c 0 6 c 1 3 + 442880 Q 4 β 11 ν c 0 8 c 1 − 1166592 Q 4 β 10 e 2 c 0 5 c 1 4 − 1590016 Q 4 β 10 e ν c 0 7 c 1 2 − 18432 Q 4 β 10 ν 2 c 0 9 + 1015040 Q 4 β 9 e 2 ν c 0 6 c 1 3 + 127744 Q 4 β 9 e ν 2 c 0 8 c 1 − 104576 Q 4 β 8 e 2 ν 2 c 0 7 c 1 2 − 1228800 Q 2 β 12 c 0 7 c 1 4 + 798720 Q 2 β 11 e c 0 6 c 1 5 + 202752 Q 2 β 11 ν c 0 8 c 1 3 − 132096 Q 2 β 10 e ν c 0 7 c 1 4 + 392 Q 10 β 6 e 5 c 0 3 − 25344 Q 8 β 8 e 3 c 0 5 + 18128 Q 8 β 7 e 4 c 0 4 c 1 − 16416 Q 8 β 6 e 4 ν c 0 5 + 52992 Q 6 β 10 e c 0 7 + 52352 Q 6 β 9 e 2 c 0 6 c 1 − 86016 Q 6 β 8 e 3 c 0 5 c 1 2 + 154560 Q 6 β 8 e 2 ν c 0 7 − 121920 Q 6 β 7 e 3 ν c 0 6 c 1 + 79392 Q 6 β 6 e 3 ν 2 c 0 7 − 1394688 Q 4 β 11 c 0 8 c 1 + 3662336 Q 4 β 10 e c 0 7 c 1 2 + 212736 Q 4 β 10 ν c 0 9 − 1757952 Q 4 β 9 e 2 c 0 6 c 1 3 − 1704064 Q 4 β 9 e ν c 0 8 c 1 + 1854080 Q 4 β 8 e 2 ν c 0 7 c 1 2 + 104448 Q 4 β 8 e ν 2 c 0 9 − 177344 Q 4 β 7 e 2 ν 2 c 0 8 c 1 − 3059712 Q 2 β 11 c 0 8 c 1 3 + 2758656 Q 2 β 10 e c 0 7 c 1 4 + 511488 Q 2 β 10 ν c 0 9 c 1 2 − 458496 Q 2 β 9 e ν c 0 8 c 1 3 + Q 12 β 4 e 7 + 720 Q 10 β 6 e 5 c 0 2 − 396 Q 10 β 5 e 6 c 0 c 1 + 328 Q 10 β 4 e 6 ν c 0 2 + 21488 Q 8 β 8 e 3 c 0 4 − 32640 Q 8 β 7 e 4 c 0 3 c 1 + 11424 Q 8 β 6 e 5 c 0 2 c 1 2 + 15608 Q 8 β 6 e 4 ν c 0 4 − 6384 Q 8 β 6 e 4 c 0 5 − 11680 Q 8 β 5 e 5 ν c 0 3 c 1 + 2236 Q 8 β 4 e 5 ν 2 c 0 4 + 47744 Q 6 β 10 e c 0 6 − 193600 Q 6 β 9 e 2 c 0 5 c 1 + 210336 Q 6 β 8 e 3 c 0 4 c 1 2 + 44640 Q 6 β 8 e 2 ν c 0 6 + 160128 Q 6 β 8 e 2 c 0 7 − 65472 Q 6 β 7 e 4 c 0 3 c 1 3 − 102048 Q 6 β 7 e 3 ν c 0 5 c 1 − 188032 Q 6 β 7 e 3 c 0 6 c 1 + 51072 Q 6 β 6 e 4 ν c 0 4 c 1 2 + 6752 Q 6 β 6 e 3 ν 2 c 0 6 + 102656 Q 6 β 6 e 3 ν c 0 7 − 6096 Q 6 β 5 e 4 ν 2 c 0 5 c 1 − 80896 Q 4 β 11 c 0 7 c 1 + 274688 Q 4 β 10 e c 0 6 c 1 2 + 6400 Q 4 β 10 ν c 0 8 − 285696 Q 4 β 10 c 0 9 − 285312 Q 4 β 9 e 2 c 0 5 c 1 3 − 53248 Q 4 β 9 e ν c 0 7 c 1 + 1259520 Q 4 β 9 e c 0 8 c 1 + 89856 Q 4 β 8 e 3 c 0 4 c 1 4 + 81856 Q 4 β 8 e 2 ν c 0 6 c 1 2 − 475392 Q 4 β 8 e 2 c 0 7 c 1 2 − 509568 Q 4 β 8 e ν c 0 9 − 31296 Q 4 β 7 e 3 ν c 0 5 c 1 3 + 1318016 Q 4 β 7 e 2 ν c 0 8 c 1 − 110016 Q 4 β 6 e 2 ν 2 c 0 9 − 61440 Q 2 β 11 c 0 7 c 1 3 + 76800 Q 2 β 10 e c 0 6 c 1 4 − 3483648 Q 2 β 10 c 0 9 c 1 2 − 23040 Q 2 β 9 e 2 c 0 5 c 1 5 + 4801536 Q 2 β 9 e c 0 8 c 1 3 + 649728 Q 2 β 9 ν c 0 10 c 1 − 836352 Q 2 β 8 e ν c 0 9 c 1 2 + 262 Q 10 β 4 e 6 c 0 2 − 2792 Q 8 β 6 e 4 c 0 4 + 1392 Q 8 β 5 e 5 c 0 3 c 1 − 4308 Q 8 β 4 e 5 ν c 0 4 − 126656 Q 6 β 8 e 2 c 0 6 + 298144 Q 6 β 7 e 3 c 0 5 c 1 − 143760 Q 6 β 6 e 4 c 0 4 c 1 2 − 106640 Q 6 β 6 e 3 ν c 0 6 + 16704 Q 6 β 6 e 3 c 0 7 + 117568 Q 6 β 5 e 4 ν c 0 5 c 1 − 10232 Q 6 β 4 e 4 ν 2 c 0 6 − 89088 Q 4 β 10 c 0 8 + 637952 Q 4 β 9 e c 0 7 c 1 − 1049216 Q 4 β 8 e 2 c 0 6 c 1 2 − 84096 Q 4 β 8 e ν c 0 8 + 10368 Q 4 β 8 e c 0 9 + 468672 Q 4 β 7 e 3 c 0 5 c 1 3 + 272768 Q 4 β 7 e 2 ν c 0 7 c 1 + 717504 Q 4 β 7 e 2 c 0 8 c 1 − 162016 Q 4 β 6 e 3 ν c 0 6 c 1 2 + 254592 Q 4 β 6 e 2 ν c 0 9 − 304128 Q 2 β 10 c 0 8 c 1 2 + 528384 Q 2 β 9 e c 0 7 c 1 3 − 1847808 Q 2 β 9 c 0 10 c 1 − 203520 Q 2 β 8 e 2 c 0 6 c 1 4 + 4407552 Q 2 β 8 e c 0 9 c 1 2 + 599040 Q 2 β 8 ν c 0 11 − 949248 Q 2 β 7 e ν c 0 10 c 1 − 4764 Q 8 β 4 e 5 c 0 4 + 42848 Q 6 β 6 e 3 c 0 6 − 32304 Q 6 β 5 e 4 c 0 5 c 1 + 53024 Q 6 β 4 e 4 ν c 0 6 + 324096 Q 4 β 8 e c 0 8 ,$
$− 1119424 Q 4 β 7 e 2 c 0 7 c 1 + 818784 Q 4 β 6 e 3 c 0 6 c 1 2 + 230880 Q 4 β 6 e 2 ν c 0 8 + 364608 Q 4 β 6 e 2 c 0 9 − 281920 Q 4 β 5 e 3 ν c 0 7 c 1 − 511488 Q 2 β 9 c 0 9 c 1 + 1375488 Q 2 β 8 e c 0 8 c 1 2 − 691200 Q 2 β 8 c 0 11 − 722688 Q 2 β 7 e 2 c 0 7 c 1 3 + 2193408 Q 2 β 7 e c 0 10 c 1 − 1244160 Q 2 β 6 e ν c 0 11 + 42 Q 10 β 2 e 7 c 0 + 2304 Q 8 β 4 e 5 c 0 3 − 722688 Q 2 β 7 e 2 c 0 7 c 1 3 + 2193408 Q 2 β 7 e c 0 10 c 1 − 1244160 Q 2 β 6 e ν c 0 11 + 42 Q 10 β 2 e 7 c 0 + 2304 Q 8 β 4 e 5 c 0 3 − 1656 Q 8 β 3 e 6 c 0 2 c 1 + 656 Q 8 β 2 e 6 ν c 0 3 + 9920 Q 6 β 6 e 3 c 0 5 − 19416 Q 6 β 5 e 4 c 0 4 c 1 + 8736 Q 6 β 4 e 5 c 0 3 c 1 2 + 2936 Q 6 β 4 e 4 ν c 0 5 + 38176 Q 6 β 4 e 4 c 0 6 − 2436 Q 6 β 3 e 5 ν c 0 4 c 1 + 3840 Q 4 β 8 e c 0 7 − 18624 Q 4 β 7 e 2 c 0 6 c 1 + 22656 Q 4 β 6 e 3 c 0 5 c 1 2 − 286848 Q 4 β 6 e 2 c 0 8 − 7632 Q 4 β 5 e 4 c 0 4 c 1 3 + 497568 Q 4 β 5 e 3 c 0 7 c 1 − 171184 Q 4 β 4 e 3 ν c 0 8 − 324864 Q 2 β 8 c 0 10 + 1672704 Q 2 β 7 e c 0 9 c 1 − 1315008 Q 2 β 6 e 2 c 0 8 c 1 2 − 1244160 Q 2 β 6 e c 0 11 − 5160960 β 7 c 0 12 c 1 − 608 Q 8 β 2 e 6 c 0 3 − 20576 Q 6 β 4 e 4 c 0 5 + 19980 Q 6 β 3 e 5 c 0 4 c 1 − 4172 Q 6 β 2 e 5 ν c 0 5 − 30528 Q 4 β 6 e 2 c 0 7 + 77184 Q 4 β 5 e 3 c 0 6 c 1 − 40080 Q 4 β 4 e 4 c 0 5 c 1 2 + 23280 Q 4 β 4 e 3 c 0 8 + 949248 Q 2 β 6 e c 0 10 − 1310976 Q 2 β 5 e 2 c 0 9 c 1 + 8544 Q 6 β 2 e 5 c 0 5 + 66432 Q 4 β 4 e 3 c 0 7 − 70584 Q 4 β 3 e 4 c 0 6 c 1 − 785664 Q 2 β 4 e 2 c 0 10 + 63 Q 8 e 7 c 0 2 + 372 Q 6 β 2 e 5 c 0 4 − 292 Q 6 β e 6 c 0 3 c 1 − 42744 Q 4 β 2 e 4 c 0 7 − 507 Q 6 e 6 c 0 4 )$
where $e = β 2 − α 2$.

## Appendix B

$d 1 = − Q e 2 β c 0 ,$
$d 2 = − Q ( 2 β 2 c 0 − β e c 1 − e c 0 ) 4 β 2 c 0 2 ,$
$d 3 = − 1 , 96 β 5 c 0 4 Q ( 8 Q 2 β 4 e c 0 − 4 Q 2 β 3 e 2 c 1 + 4 Q 2 β 2 e 2 ν c 0 − 32 β 5 c 0 2 c 1 + 16 β 4 e c 0 c 1 2 + 4 Q 2 β 2 e 2 c 0 − 16 β 4 c 0 3 + 40 β 3 e c 0 2 c 1 + 16 β 2 e c 0 3 + Q 2 e 3 ) ,$
$d 4 = − 1 , 768 β 6 c 0 6 Q ( 8 Q 4 β 4 e 2 c 0 − 4 Q 4 β 3 e 3 c 1 + 4 Q 4 β 2 e 3 ν c 0 + 96 Q 2 β 6 c 0 3 − 176 Q 2 β 5 e c 0 2 c 1 + 64 Q 2 β 4 e 2 c 0 c 1 2 + 64 Q 2 β 4 e ν c 0 3 − 56 Q 2 β 3 e 2 ν c 0 2 c 1 + 192 β 6 c 0 3 c 1 2 − 96 β 5 e c 0 2 c 1 3 + 4 Q 4 β 2 e 3 c 0 − 32 Q 2 β 4 e c 0 3 + 24 Q 2 β 3 e 2 c 0 2 c 1 − 64 Q 2 β 2 e 2 ν c 0 3 + 384 β 5 c 0 4 c 1 − 384 β 4 e c 0 3 c 1 2 − 64 Q 2 β 2 e 2 c 0 3 + 96 β 4 c 0 5 − 432 β 3 e c 0 4 c 1 + Q 4 e 4 + 20 Q 2 β 2 e 2 c 0 2 − 16 Q 2 β e 3 c 0 c 1 − 96 β 2 e c 0 5 − 20 Q 2 e 3 c 0 2 ) ,$
$d 5 = − 1 , 7680 β 9 c 0 8 Q ( 8 Q 6 β 6 e 3 c 0 − 4 Q 6 β 5 e 4 c 1 + 4 Q 6 β 4 e 4 ν c 0 + 416 Q 4 β 8 e c 0 3 − 560 Q 4 β 7 e 2 c 0 2 c 1 + 176 Q 4 β 6 e 3 c 0 c 1 2 + 336 Q 4 β 6 e 2 ν c 0 3 − 224 Q 4 β 5 e 3 ν c 0 2 c 1 + 56 Q 4 β 4 e 3 ν 2 c 0 3 − 2048 Q 2 β 9 c 0 4 c 1 + 2880 Q 2 β 8 e c 0 3 c 1 2 + 256 Q 2 β 8 ν c 0 5 − 928 Q 2 β 7 e 2 c 0 2 c 1 3 − 1216 Q 2 β 7 e ν c 0 4 c 1 + 736 Q 2 β 6 e 2 ν c 0 3 c 1 2 − 1536 β 9 c 0 4 c 1 3 + 768 β 8 e c 0 3 c 1 4 + 4 Q 6 β 4 e 4 c 0 + 144 Q 4 β 6 e 2 c 0 3 − 96 Q 4 β 5 e 3 c 0 2 c 1 − 896 Q 2 β 8 c 0 5 + 3328 Q 2 β 7 e c 0 4 c 1 − 1696 Q 2 β 6 e 2 c 0 3 c 1 2 − 1152 Q 2 β 6 e ν c 0 5 + 1824 Q 2 β 5 e 2 ν c 0 4 c 1 − 5376 β 8 c 0 5 c 1 2 + 4224 β 7 e c 0 4 c 1 3 − 56 Q 4 β 4 e 3 c 0 3 + 96 Q 2 β 6 e c 0 5 + 432 Q 2 β 5 e 2 c 0 4 c 1 + 944 Q 2 β 4 e 2 ν c 0 5 − 4992 β 7 c 0 6 c 1 + 7872 β 6 e c 0 5 c 1 2 + Q 6 β 2 e 5 + 92 Q 4 β 4 e 3 c 0 2 − 60 Q 4 β 3 e 4 c 0 c 1 + 30 Q 4 β 2 e 4 ν c 0 2 + 160 Q 2 β 6 e c 0 4 − 448 Q 2 β 5 e 2 c 0 3 c 1 + 232 Q 2 β 4 e 3 c 0 2 c 1 2 + 944 Q 2 β 4 e 2 c 0 5 − 768 β 6 c 0 7 + 5376 β 5 e c 0 6 c 1 − 2 Q 4 β 2 e 4 c 0 2 − 496 Q 2 β 4 e 2 c 0 4 + 608 Q 2 β 3 e 3 c 0 3 c 1 + 768 β 4 e c 0 7 + 348 Q 2 β 2 e 3 c 0 4 + 4 Q 4 e 5 c 0 ) ,$
$d 6 = − 1 92160 β 10 c 0 10 Q ( 8 Q 8 β 6 e 4 c 0 − 4 Q 8 β 5 e 5 c 1 + 4 Q 8 β 4 e 5 ν c 0 + 1216 Q 6 β 8 e 2 c 0 3 − 1440 Q 6 β 7 e 3 c 0 2 c 1 + 416 Q 6 β 6 e 4 c 0 c 1 2 + 1072 Q 6 β 6 e 3 ν c 0 3 − 632 Q 6 β 5 e 4 ν c 0 2 c 1 + 224 Q 6 β 4 e 4 ν 2 c 0 3 + 5760 Q 4 β 10 c 0 5 − 22208 Q 4 β 9 e c 0 4 c 1 + 20160 Q 4 β 8 e 2 c 0 3 c 1 2 + 7168 Q 4 β 8 e ν c 0 5 − 5248 Q 4 β 7 e 3 c 0 2 c 1 3 − 15968 Q 4 β 7 e 2 ν c 0 4 c 1 + 6944 Q 4 β 6 e 3 ν c 0 3 c 1 2 + 1888 Q 4 β 6 e 2 ν 2 c 0 5 − 2032 Q 4 β 5 e 3 ν 2 c 0 4 c 1 + 37120 Q 2 β 10 c 0 5 c 1 2 − 46976 Q 2 β 9 e c 0 4 c 1 3 − 6400 Q 2 β 9 ν c 0 6 c 1 + 14208 Q 2 β 8 e 2 c 0 3 c 1 4 + 20224 Q 2 β 8 e ν c 0 5 c 1 2 − 10432 Q 2 β 7 e 2 ν c 0 4 c 1 3 + 15360 β 10 c 0 5 c 1 4 − 7680 β 9 e c 0 4 c 1 5 + 4 Q 8 β 4 e 5 c 0 + 768 Q 6 β 6 e 3 c 0 3 − 448 Q 6 β 5 e 4 c 0 2 c 1 + 280 Q 6 β 4 e 4 ν c 0 3 − 4288 Q 4 β 8 e c 0 5 + 7360 Q 4 β 7 e 2 c 0 4 c 1 − 2624 Q 4 β 6 e 3 c 0 3 c 1 2 − 7776 Q 4 β 6 e 2 ν c 0 5 + 6880 Q 4 β 5 e 3 ν c 0 4 c 1 − 2384 Q 4 β 4 e 3 ν 2 c 0 5 + 52480 Q 2 β 9 c 0 6 c 1 − 112000 Q 2 β 8 e c 0 5 c 1 2 − 5120 Q 2 β 8 ν c 0 7 + 46976 Q 2 β 7 e 2 c 0 4 c 1 3 + 44416 Q 2 β 7 e ν c 0 6 c 1 − 40512 Q 2 β 6 e 2 ν c 0 5 c 1 2 + 76800 β 9 c 0 6 c 1 3 − 53760 β 8 e c 0 5 c 1 4 + 56 Q 6 β 4 e 4 c 0 3 − 5728 Q 4 β 6 e 2 c 0 5 + 5728 Q 4 β 5 e 3 c 0 4 c 1 − 2256 Q 4 β 4 e 3 ν c 0 5 + 12160 Q 2 β 8 c 0 7 − 56128 Q 2 β 7 e c 0 6 c 1 + 30144 Q 2 β 6 e 2 c 0 5 c 1 2 + 19456 Q 2 β 6 e ν c 0 7 − 46944 Q 2 β 5 e 2 ν c 0 6 c 1 + 126720 β 8 c 0 7 c 1 2 − 140160 β 7 e c 0 6 c 1 3 + Q 8 β 2 e 6 + 280 Q 6 β 4 e 4 c 0 2 − 164 Q 6 β 3 e 5 c 0 c 1 + 116 Q 6 β 2 e 5 ν c 0 2 + 2512 Q 4 β 6 e 2 c 0 4 − 4880 Q 4 β 5 e 3 c 0 3 c 1 + 2000 Q 4 β 4 e 4 c 0 2 c 1 2 + 1232 Q 4 β 4 e 3 ν c 0 4 + 128 Q 4 β 4 e 3 c 0 5 − 1192 Q 4 β 3 e 4 ν c 0 3 c 1 + 640 Q 2 β 8 c 0 6 − 4864 Q 2 β 7 e c 0 5 c 1 + 8416 Q 2 β 6 e 2 c 0 4 c 1 2 + 1216 Q 2 β 6 e c 0 7 − 3552 Q 2 β 5 e 3 c 0 3 c 1 3 − 22080 Q 2 β 5 e 2 c 0 6 c 1 − 14816 Q 2 β 4 e 2 ν c 0 7 + 72960 β 7 c 0 8 c 1 − 163200 β 6 e c 0 7 c 1 2 + 70 Q 6 β 2 e 5 c 0 2 − 2552 Q 4 β 4 e 3 c 0 4 + 2096 Q 4 β 3 e 4 c 0 3 c 1 − 1484 Q 4 β 2 e 4 ν c 0 4 − 4928 Q 2 β 6 e c 0 6 + 20224 Q 2 β 5 e 2 c 0 5 c 1 − 14352 Q 2 β 4 e 3 c 0 4 c 1 2 − 14816 Q 2 β 4 e 2 c 0 7 + 7680 β 6 c 0 9 − 76800 β 5 e c 0 8 c 1 − 688 Q 4 β 2 e 4 c 0 4 + 10384 Q 2 β 4 e 2 c 0 6 − 17664 Q 2 β 3 e 3 c 0 5 c 1 − 7680 β 4 e c 0 9 + 15 Q 6 e 6 c 0 + 192 Q 4 β 2 e 4 c 0 3 − 172 Q 4 β e 5 c 0 2 c 1 − 6216 Q 2 β 2 e 3 c 0 6 − 224 Q 4 e 5 c 0 3 ) ,$
$d 7 = − 1 1290240 β 13 c 0 12 Q ( 8 Q 12 β 8 e 5 c 0 − 4 Q 12 β 7 e 6 c 1 + 4 Q 12 β 6 e 6 ν c 0 + 3008 Q 10 β 10 e 3 c 0 3 − 3328 Q 10 β 9 e 4 c 0 2 c 1 + 912 Q 8 β 8 e 5 c 0 c 1 2 + 2784 Q 8 β 8 e 4 ν c 0 3 − 1536 Q 8 β 7 e 5 ν c 0 2 c 1 + 632 Q 8 β 6 e 5 ν 2 c 0 3 + 54144 Q 6 β 12 e c 0 5 − 137152 Q 6 β 11 e 2 c 0 4 c 1 + 101504 Q 6 β 10 e 3 c 0 3 c 1 2 + 67008 Q 6 β 10 e 2 ν c 0 5 − 23232 Q 6 β 9 e 4 c 0 2 c 1 3 − 109184 Q 6 β 9 e 3 ν c 0 4 c 1 + 39744 Q 6 β 8 e 4 ν c 0 3 c 1 2 + 23616 Q 6 β 8 e 3 ν 2 c 0 5 − 19056 Q 6 β 7 e 4 ν 2 c 0 4 c 1 + 2032 Q 6 β 6 e 4 ν 3 c 0 5 − 294912 Q 4 β 13 c 0 6 c 1 + 783872 Q 4 β 12 e c 0 5 c 1 2 + 41472 Q 4 β 12 ν c 0 7 − 599808 Q 4 β 11 e 2 c 0 4 c 1 3 − 360960 Q 4 β 11 e ν c 0 6 c 1 + 140800 Q 4 β 10 e 3 c 0 3 c 1 4 + 518912 Q 4 β 10 e 2 ν c 0 5 c 1 2 + 21504 Q 4 β 10 e ν 2 c 0 7 − 185344 Q 4 β 9 e 3 ν c 0 4 c 1 3 − 83712 Q 4 β 9 e 2 ν 2 c 0 6 c 1 + 55680 Q 4 β 8 e 3 ν 2 c 0 5 c 1 2 − 681984 Q 2 β 13 c 0 6 c 1 3 + 815616 Q 2 β 12 e c 0 5 c 1 4 + 132096 Q 2 β 12 ν c 0 7 c 1 2 − 237312 Q 2 β 11 e 2 c 0 4 c 1 5 − 347136 Q 2 β 11 e ν c 0 6 c 1 3 + 163584 Q 2 β 10 e 2 ν c 0 5 c 1 4 − 184320 β 13 c 0 6 c 1 5 + 92160 β 12 e c 0 5 c 1 6 + 4 Q 10 β 6 e 6 c 0 + 2352 Q 8 β 8 e 4 c 0 3 − 1288 Q 8 β 7 e 5 c 0 2 c 1 + 1032 Q 8 β 6 e 5 ν c 0 3 + 11840 Q 6 β 10 e 2 c 0 5 − 23104 Q 6 β 9 e 3 c 0 4 c 1 + 9344 Q 6 β 8 e 4 c 0 3 c 1 2 − 9248 Q 6 β 8 e 3 ν c 0 5 + 4432 Q 6 β 7 e 4 ν c 0 4 c 1 − 7536 Q 6 β 6 e 4 ν 2 c 0 5 − 122112 Q 4 β 12 c 0 7 + 705664 Q 4 β 11 e c 0 6 c 1 − 807296 Q 4 β 10 e 2 c 0 5 c 1 2 − 225792 Q 4 β 10 e ν c 0 7 + 246784 Q 4 β 9 e 3 c 0 4 c 1 3 + 741952 Q 4 β 9 e 2 ν c 0 6 c 1 − 412096 Q 4 β 8 e 3 ν c 0 5 c 1 2 − 88128 Q 4 β 8 e 2 ν 2 c 0 7 + 137376 Q 4 β 7 e 3 ν 2 c 0 6 c 1 − 1774080 Q 2 β 12 c 0 7 c 1 2 + 3034368 Q 2 β 11 e c 0 6 c 1 3 + 259584 Q 2 β 11 ν c 0 8 c 1 − 1138176 Q 2 β 10 e 2 c 0 5 c 1 4 − 1233408 Q 2 β 10 e ν c 0 7 c 1 2 + 870528 Q 2 β 9 e 2 ν c 0 6 c 1 3 − 1198080 β 12 c 0 7 c 1 4 + 783360 β 11 e c 0 6 c 1 5 + 400 Q 8 β 6 e 5 c 0 3 − 24064 Q 6 β 8 e 3 c 0 5 + 17360 Q 6 β 7 e 4 c 0 4 c 1 − 15968 Q 6 β 6 e 4 ν c 0 5 + 31104 Q 4 β 10 e c 0 7 + 84992 Q 4 β 9 e 2 c 0 6 c 1 − 96896 Q 4 β 8 e 3 c 0 5 c 1 2 + 140736 Q 4 β 8 e 2 ν c 0 7 − 113728 Q 4 β 7 e 3 ν c 0 6 c 1 + 75552 Q 4 β 6 e 3 ν 2 c 0 7 − 1224192 Q 2 β 11 c 0 8 c 1 + 3346176 Q 2 β 10 e c 0 7 c 1 2 + 98304 Q 2 β 10 ν c 0 9 − 1634304 Q 2 β 9 e 2 c 0 6 c 1 3 − 1278720 Q 2 β 9 e ν c 0 8 c 1 + 1606272 Q 2 β 8 e 2 ν c 0 7 c 1 2 − 2856960 β 11 c 0 8 c 1 3 + 2626560 β 10 e c 0 7 c 1 4 + Q 10 β 4 e 7 + 712 Q 8 β 6 e 5 c 0 2 − 392 Q 8 β 5 e 6 c 0 c 1 + 322 Q 8 β 4 e 6 ν c 0 2 + 19792 Q 6 β 8 e 3 c 0 4 − 30720 Q 6 β 7 e 4 c 0 3 c 1 + 10888 Q 6 β 6 e 5 c 0 2 c 1 2 + 13576 Q 6 β 6 e 4 ν c 0 4 − 6400 Q 6 β 6 e 4 c 0 5 − 10520 Q 6 β 5 e 5 ν c 0 3 c 1 + 1700 Q 6 β 4 e 5 ν 2 c 0 4 + 29824 Q 4 β 10 e c 0 6 − 145792 Q 4 β 9 e 2 c 0 5 c 1 + 173696 Q 4 β 8 e 3 c 0 4 c 1 2 + 21248 Q 4 β 8 e 2 ν c 0 6 + 147648 Q 4 β 8 e 2 c 0 7 − 56864 Q 4 β 7 e 4 c 0 3 c 1 3 − 60800 Q 4 β 7 e 3 ν c 0 5 c 1 − 175296 Q 4 β 7 e 3 c 0 6 c 1 + 35168 Q 4 β 6 e 4 ν c 0 4 c 1 2 + 96096 Q 4 β 6 e 3 ν c 0 7 − 24576 Q 2 β 11 c 0 7 c 1 + 115968 Q 2 β 10 e c 0 6 c 1 2 − 189696 Q 2 β 10 c 0 9 − 158976 Q 2 β 9 e 2 c 0 5 c 1 3 + 961920 Q 2 β 9 e c 0 8 c 1 + 59328 Q 2 β 8 e 3 c 0 4 c 1 4 − 332160 Q 2 β 8 e 2 c 0 7 c 1 2 − 347136 Q 2 β 8 e ν c 0 9 + 1166400 Q 2 β 7 e 2 ν c 0 8 c 1 − 2972160 β 10 c 0 9 c 1 2 + 4343040 β 9 e c 0 8 c 1 3 + 260 Q 8 β 4 e 6 c 0 2 − 3112 Q 6 β 6 e 4 c 0 4 + 1568 Q 6 β 5 e 5 c 0 3 c 1 − 4480 Q 6 β 4 e 5 ν c 0 4 − 99424 Q 4 β 8 e 2 c 0 6 + 259040 Q 4 β 7 e 3 c 0 5 c 1 − 130624 Q 4 β 6 e 4 c 0 4 c 1 2 − 69856 Q 4 β 6 e 3 ν c 0 6 + 20544 Q 4 β 6 e 3 c 0 7 + 90608 Q 4 β 5 e 4 ν c 0 5 c 1 − 22272 Q 2 β 10 c 0 8 + 259584 Q 2 β 9 e c 0 7 c 1 − 600384 Q 2 β 8 e 2 c 0 6 c 1 2 − 47616 Q 2 β 8 e c 0 9 + 325440 Q 2 β 7 e 3 c 0 5 c 1 3 + 691776 Q 2 β 7 e 2 c 0 8 c 1 + 254592 Q 2 β 6 e 2 ν c 0 9 − 1198080 β 9 c 0 10 c 1 + 3571200 β 8 e c 0 9 c 1 2 − 4648 Q 6 β 4 e 5 c 0 4 + 48752 Q 4 β 6 e 3 c 0 6 − 37696 Q 4 β 5 e 4 c 0 5 c 1 + 53144 Q 4 β 4 e 4 ν c 0 6 + 122496 Q 2 β 8 e c 0 8 − 681984 Q 2 β 7 e 2 c 0 7 c 1 + 626208 Q 2 β 6 e 3 c 0 6 c 1 2 + 254592 Q 2 β 6 e 2 c 0 9 − 92160 β 8 c 0 11 + 1244160 β 7 e c 0 10 c 1 + 41 Q 8 β 2 e 7 c 0 + 1924 Q 6 β 4 e 5 c 0 3 − 1442 Q 6 β 3 e 6 c 0 2 c 1 + 470 Q 6 β 2 e 6 ν c 0 3 + 4288 Q 4 β 6 e 3 c 0 5 − 10336 Q 4 β 5 e 4 c 0 4 c 1 + 5416 Q 4 β 4 e 5 c 0 3 c 1 2 + 34192 Q 4 β 4 e 4 c 0 6 − 217440 Q 2 β 6 e 2 c 0 8 + 484608 Q 2 β 5 e 3 c 0 7 c 1 + 92160 β 6 e c 0 11 − 652 Q 6 β 2 e 6 c 0 3 − 12608 Q 4 β 4 e 4 c 0 5 + 14440 Q 4 β 3 e 5 c 0 4 c 1 + 118656 Q 2 β 4 e 3 c 0 8 + 8896 Q 4 β 2 e 5 c 0 5 + 43 Q 6 e 7 c 0 2 ) ,$
where $e = β 2 − α 2$.

## References

1. Fisher, L. Force between biological surfaces. J. Chem. Soc. Faraday Trans. 1993, 89, 2567–2582. [Google Scholar]
2. Bakowsky, H.; Richter, T.; Kneuer, C.; Hoekstra, D.; Rothe, U.; Bendas, G.; Ehrhardt, C.; Bakowsky, U. Adhesion characteristics and stability assessment of lectin-modified liposomes for site-specific drug delivery. Biochim. Biophys. Acta Biomembr. 2008, 1778, 242–249. [Google Scholar] [CrossRef] [PubMed][Green Version]
3. Rebeiz, G.M. RF MEMS: Theory, Design, and Technology; John Wiley & Sons, Inc: Hoboken, NJ, USA, 2004. [Google Scholar]
4. Barba, P.D.; Fattorusso, L.; Versaci, M. A 2D non-linear second-order differential model for electrostatic circular membrane MEMS devices: A result of existence and uniqueness. Mathematics 2019, 7, 1193. [Google Scholar] [CrossRef][Green Version]
5. Xu, D.; Liechti, K.M. Bulge testing transparent thin films with moiré deflectometry. Exp. Mech. 2010, 50, 217–225. [Google Scholar] [CrossRef]
6. Sun, J.Y.; Hu, J.L.; Zheng, Z.L.; He, X.T.; Geng, H.H. A practical method for simultaneous determination of Poisson’s ratio and Young’s modulus of elasticity of thin films. J. Mech. Sci. Technol. 2011, 25, 3165–3171. [Google Scholar] [CrossRef]
7. Zheng, D.; Xu, Y.; Tsai, Y.P.; Tu, K.N.; Patterson, P.; Zhao, B.; Liu, Q.Z.; Brongo, M. Mechanical property measurement of thin polymeric-low dielectric-constant films using bulge testing method. Appl. Phys. Lett. 2000, 76, 2008–2010. [Google Scholar] [CrossRef]
8. Sun, J.Y.; Lian, Y.S.; Li, Z.L.; He, X.T.; Zheng, Z.L. Theoretical study on shaft-loaded blister test technique: Synchronous characterization of surface and interfacial mechanical properties. Int. J. Adhes. Adhes. 2014, 51, 128–139. [Google Scholar] [CrossRef]
9. Sun, J.Y.; Qian, S.H.; Li, Y.M.; He, X.T.; Zheng, Z.L. Theoretical study of adhesion energy measurement for film/substrate interface using pressurized blister test: Energy release rate. Measurement 2013, 46, 2278–2287. [Google Scholar] [CrossRef]
10. Yang, Z.X.; Sun, J.Y.; Li, K.; Lian, Y.S.; He, X.T.; Zheng, Z.L. Theoretical study on synchronous characterization of surface and interfacial mechanical properties of thin-film/substrate systems with residual stress based on pressure blister test technique. Polymers 2018, 10, 49. [Google Scholar] [CrossRef][Green Version]
11. Chang, Y.S.; Lai, Y.H.; Dillard, D.A. The constrained blister-a nearly constant strain-energy release rate test for adhesives. J. Adhes. 1989, 27, 197–211. [Google Scholar] [CrossRef]
12. Napolitano, M.J.; Chudnovsky, A.; Moet, A. The constrained blister test for the energy of interfacial adhesion. J. Adhes. Sci. Technol. 1988, 2, 311–323. [Google Scholar] [CrossRef]
13. Sun, J.Y.; Hu, J.L.; He, X.T.; Zheng, Z.L.; Geng, H.H. A theoretical study of thin film delamination using clamped punch-loaded blister test: Energy release rate and closed-form solution. J. Adhes. Sci. Technol. 2011, 25, 2063–2080. [Google Scholar] [CrossRef]
14. Sun, J.Y.; Hu, J.L.; He, X.T.; Zheng, Z.L. A theoretical study of a clamped punch-loaded blister configuration: The quantitative relation of load and deflection. Int. J. Mech. Sci. 2010, 52, 928–936. [Google Scholar] [CrossRef]
15. Sun, J.Y.; Rong, Y.; He, X.T.; Gao, X.W.; Zheng, Z.L. Power series solution of circular membrane under uniformly distributed loads: Investigation into Hencky transformation. Stuct. Eng. Mech. 2013, 45, 631–641. [Google Scholar] [CrossRef]
16. Sun, J.Y.; Lian, Y.S.; Li, Y.M.; He, X.T.; Zheng, Z.L. Closed-form solution of elastic circular membrane with initial stress under uniformly-distributed loads: Extended Hencky solution. Z. Angew. Math. Mech. 2015, 95, 1335–1341. [Google Scholar] [CrossRef]
17. Lian, Y.S.; He, X.T.; Liu, G.H.; Sun, J.Y.; Zheng, Z.L. Application of perturbation idea to well-known Hencky problem: A perturbation solution without small-rotation-angle assumption. Mech. Res. Commun. 2017, 83, 32–46. [Google Scholar] [CrossRef]
18. Yang, Z.X.; Sun, J.Y.; Ran, G.M.; He, X.T. A new solution to Föppl-Hencky membrane equation. J. Mech. 2017, 33, N7–N11. [Google Scholar] [CrossRef]
19. Plaut, R.H. Linearly elastic annular and circular membranes under radial, transverse, and torsional loading. Part I: Large unwrinkled axisymmetric deformations. Acta Mech. 2009, 202, 79–99. [Google Scholar] [CrossRef]
20. Lian, Y.S.; Sun, J.Y.; Yang, Z.X.; He, X.T.; Zheng, Z.L. Closed-form solution of well-known Hencky problem without small-rotation-angle assumption. Z. Angew. Math. Mech. 2016, 96, 1434–1441. [Google Scholar] [CrossRef]
21. Lian, Y.S.; Sun, J.Y.; Dong, J.; Zheng, Z.L.; Yang, Z.X. Closed-form solution of axisymmetric deformation of prestressed Föppl-Hencky membrane under constrained deflecting. Stuct. Eng. Mech. 2019, 69, 693–698. [Google Scholar]
22. Hencky, H. On the stress state in circular plates with vanishing bending stiffness. Z. Math. Phys. 1915, 63, 311–317. [Google Scholar]
23. Chien, W.Z. Asymptotic behavior of a thin clamped circular plate under uniform normal pressure at very large deflection. Nat. Tsinghua Univ. 1948, 5, 193–208. [Google Scholar]
24. Alekseev, S.A. Elastic circular membranes under the uniformly distributed loads. Eng. Corpus 1953, 14, 196–198. [Google Scholar]
25. Fichter, W. Some Solutions for the Large Deflections of Uniformly Loaded Circular Membranes; NASA TP-3658; NASA Langley Research Center: Washington, DC, USA, 1997. [Google Scholar]
26. Plaut, R.H.; White, S.A.; Dillard, D.A. Effect of work of adhesion on contact of a pressurized blister with a flat surface. Int. J. Adhes. Adhes. 2003, 23, 207–214. [Google Scholar] [CrossRef]
27. Xu, D.; Liechti, K.M. Analytical and experimental study of a circular membrane in Hertzian contact with a rigid substrate. Int. J. Solids Struct. 2010, 47, 207–214. [Google Scholar] [CrossRef][Green Version]
28. Wang, T.F.; He, X.T.; Li, Y.H. Closed-form solution of a peripherally fixed circular membrane under uniformly distributed transverse loads and deflection restrictions. Math. Probl. Eng. 2018, 2018, 5989010. [Google Scholar] [CrossRef]
Figure 1. Sketch of the deformed circular membrane in contact with the frictionless rigid plate.
Figure 1. Sketch of the deformed circular membrane in contact with the frictionless rigid plate.
Figure 2. The free body diagram of the deformed circular membrane with radius bra.
Figure 2. The free body diagram of the deformed circular membrane with radius bra.
Figure 3. Variations of w with r calculated by the solution presented in  for q = 0.0554 MPa (the dash-dotted line) and by the solution presented here for q = 0.0556 MPa and g = 2.5 mm (the solid line).
Figure 3. Variations of w with r calculated by the solution presented in  for q = 0.0554 MPa (the dash-dotted line) and by the solution presented here for q = 0.0556 MPa and g = 2.5 mm (the solid line).
Figure 4. Variations of w with r for the gap g = 0.5 mm and the contact radius b = 4 mm corresponding to q = 0.001327 MPa and 0.001322 MPa calculated by the solutions presented in  (the dash-dotted lines) and presented here (the solid lines), and for g = 2.5 mm and b = 4 mm corresponding to q = 0.1654 MPa and 0.1576 MPa calculated by the solutions presented in  (the dash-dotted lines) and presented here (the solid lines).
Figure 4. Variations of w with r for the gap g = 0.5 mm and the contact radius b = 4 mm corresponding to q = 0.001327 MPa and 0.001322 MPa calculated by the solutions presented in  (the dash-dotted lines) and presented here (the solid lines), and for g = 2.5 mm and b = 4 mm corresponding to q = 0.1654 MPa and 0.1576 MPa calculated by the solutions presented in  (the dash-dotted lines) and presented here (the solid lines).
Figure 5. Variations of $σ r$ with r for the gap g = 0.5 mm and the contact radius b = 4 mm corresponding to q = 0.001327 MPa and 0.001322 MPa calculated by the solutions presented in  (the dash-dotted lines) and presented here (the solid lines), and for g = 2.5 mm and b = 4 mm corresponding to q = 0.1654 MPa and 0.1576 MPa calculated by the solutions presented in  (the dash-dotted lines) and presented here (the solid lines).
Figure 5. Variations of $σ r$ with r for the gap g = 0.5 mm and the contact radius b = 4 mm corresponding to q = 0.001327 MPa and 0.001322 MPa calculated by the solutions presented in  (the dash-dotted lines) and presented here (the solid lines), and for g = 2.5 mm and b = 4 mm corresponding to q = 0.1654 MPa and 0.1576 MPa calculated by the solutions presented in  (the dash-dotted lines) and presented here (the solid lines).

## Share and Cite

MDPI and ACS Style

Mei, D.; Sun, J.-Y.; Zhao, Z.-H.; He, X.-T. A Closed-Form Solution for the Boundary Value Problem of Gas Pressurized Circular Membranes in Contact with Frictionless Rigid Plates. Mathematics 2020, 8, 1017. https://doi.org/10.3390/math8061017

AMA Style

Mei D, Sun J-Y, Zhao Z-H, He X-T. A Closed-Form Solution for the Boundary Value Problem of Gas Pressurized Circular Membranes in Contact with Frictionless Rigid Plates. Mathematics. 2020; 8(6):1017. https://doi.org/10.3390/math8061017

Chicago/Turabian Style

Mei, Dong, Jun-Yi Sun, Zhi-Hang Zhao, and Xiao-Ting He. 2020. "A Closed-Form Solution for the Boundary Value Problem of Gas Pressurized Circular Membranes in Contact with Frictionless Rigid Plates" Mathematics 8, no. 6: 1017. https://doi.org/10.3390/math8061017

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.