Approximation by Shifts of Compositions of Dirichlet L-Functions with the Gram Function
Abstract
:1. Introduction
2. Lemmas
3. Mean Square Estimates
4. A Limit Theorem
5. Proof of Universality
- 1°
- converges weakly to P as ;
- 2°
- For every open set ,
- 3°
- For every continuity set A of P,
Author Contributions
Funding
Conflicts of Interest
References
- Dirichlet, P.G.L. Beweis des Satzes, Dass jede Unbegrenzte Arithmetische Progression, Deren Erstes Glied und Differenz Ganze Zahlen Ohne Gemeinschaftlichen Factor Sind, Unendlich viele Primzahlen Enthält. In Abhandlungen der Königlich Preussischen Akademie der Wissenschaften von; 1837; pp. 45–81. [Google Scholar]
- Andrade, J.; Baluyot, S. Small zeros of Dirichlet L-functions of quadratic characters of prime modulus. Res. Number Theory 2020, 6, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Sono, K. The second moment of quadratic Dirichlet L-functions. J. Number Theory 2020, 206, 194–230. [Google Scholar] [CrossRef]
- Zacharias, R. Mollification of the fourth moment of Dirichlet L-functions. Acta Arith. 2019, 191, 201–257. [Google Scholar] [CrossRef] [Green Version]
- Voronin, S.M. Theorem on the “universality” of the Riemann zeta-function. Izv. Akad. Nauk SSSR Ser. Matem. 1975, 39, 475–486. (In Russian) [Google Scholar] [CrossRef]
- Bagchi, B. The Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series. Ph.D. Thesis, Indian Statistical Institute, Calcutta, India, 1981. [Google Scholar]
- Bagchi, B. A joint universality theorem for Dirichlet L-functions. Math. Z. 1982, 181, 319–334. [Google Scholar] [CrossRef]
- Gonek, S.M. Analytic Properties of Zeta and L-Functions. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 1975. [Google Scholar]
- Steuding, J. Value-Distribution of L-Functions; Lecture Notes Math.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2007; Volume 1877. [Google Scholar]
- Voronin, S.M. On the functional independence of Dirichlet L-functions. Acta Arith. 1975, 27, 493–503. (In Russian) [Google Scholar]
- Karatsuba, A.A.; Voronin, S.M. The Riemann Zeta-Function; Walter de Gruiter: Berlin, Germany, 1992. [Google Scholar]
- Laurinčikas, A. On joint universality of Dirichlet L-functions. Chebysh. Sbornik 2011, 12, 124–139. [Google Scholar]
- Matsumoto, K. A survey of the theory of universality for zeta and L-functions. In Number Theory: Plowing and Staring Through High Wave Forms, Proceedings of the 7th China-Japan Semin., Fukuoka, Japan, 28 October–1 November 2013; Ser. Number Theory Appl.; Kaneko, M., Kanemitsu, S., Liu, J., Eds.; World Scientific Publishing Co: Singapore, 2015; Volume 11, pp. 95–144. [Google Scholar]
- Nakamura, T. The joint universality and the generalized strong recurrence for Dirichlet L-functions. Acta Arith. 2009, 138, 357–362. [Google Scholar] [CrossRef]
- Pańkowski, Ł. Joint universality for dependent L-functions. Ramanujan J. 2018, 45, 181–195. [Google Scholar] [CrossRef] [Green Version]
- Korolev, M.A. Gram’s law in the theory of the Riemann zeta-function, Part 1. Proc. Steklov Inst. Math. 2016, 292, 1–146. [Google Scholar] [CrossRef]
- Gram, J.-P. Sur les zéros de la fonction ζ(s) de Riemann. Acta Math. 1903, 27, 289–304. [Google Scholar] [CrossRef]
- Baker, A. The theory of linear forms in logarithms. In Transcendence Theory: Advances and Applications; Academic Press: Boston, MA, USA, 1977; pp. 1–27. [Google Scholar]
- Dubickas, A.; Laurinčikas, A. Joint discrete universality of Dirichlet L-functions. Arch. Math. 2015, 104, 25–35. [Google Scholar] [CrossRef]
- Billingsley, P. Convergence of Probability Measures, 2nd ed.; Wiley: Chichester, UK, 1999. [Google Scholar]
- Laurinčikas, A. Limit Theorems for the Riemann Zeta-Function; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1996. [Google Scholar]
- Mergelyan, S.N. Uniform approximations to functions of a complex variable. Uspekhi Matem. Nauk 1952, 7, 31–122. (In Russian) [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubickas, A.; Garunkštis, R.; Laurinčikas, A. Approximation by Shifts of Compositions of Dirichlet L-Functions with the Gram Function. Mathematics 2020, 8, 751. https://doi.org/10.3390/math8050751
Dubickas A, Garunkštis R, Laurinčikas A. Approximation by Shifts of Compositions of Dirichlet L-Functions with the Gram Function. Mathematics. 2020; 8(5):751. https://doi.org/10.3390/math8050751
Chicago/Turabian StyleDubickas, Artūras, Ramūnas Garunkštis, and Antanas Laurinčikas. 2020. "Approximation by Shifts of Compositions of Dirichlet L-Functions with the Gram Function" Mathematics 8, no. 5: 751. https://doi.org/10.3390/math8050751
APA StyleDubickas, A., Garunkštis, R., & Laurinčikas, A. (2020). Approximation by Shifts of Compositions of Dirichlet L-Functions with the Gram Function. Mathematics, 8(5), 751. https://doi.org/10.3390/math8050751