Statistical Deferred Nörlund Summability and Korovkin-Type Approximation Theorem
Abstract
:1. Introduction and Motivation
2. Preliminaries and Definitions
3. A New Korovkin-Type Approximation Theorem
4. Concluding Remarks and Observations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fast, H. Sur la convergence statistique. Colloq. Math. 1951, 2, 241–244. [Google Scholar] [CrossRef]
- Steinhaus, H. Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math. 1951, 2, 73–74. [Google Scholar]
- Zygmund, A. Trigonometric Series, 3rd ed.; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Srivastava, H.M.; Jena, B.B.; Paikray, S.K.; Misra, U.K. Statistically and relatively modular deferred-weighted summability and Korovkin-type approximation theorems. Symmetry 2019, 11, 448. [Google Scholar] [CrossRef] [Green Version]
- Shang, Y. Estrada index of random bipartite graphs. Symmetry 2015, 7, 2195–2205. [Google Scholar] [CrossRef] [Green Version]
- Braha, N.L.; Loku, V.; Srivastava, H.M. Λ2-Weighted statistical convergence and Korovkin and Voronovskaya type theorems. Appl. Math. Comput. 2015, 266, 675–686. [Google Scholar] [CrossRef]
- Braha, N.L.; Srivastava, H.M.; Mohiuddine, S.A. A Korovkin-type approximation theorem for periodic functions via the statistical summability of the generalized de la Vallée Poussin mean. Appl. Math. Comput. 2014, 228, 162–169. [Google Scholar]
- Kadak, U.; Braha, N.L.; Srivastava, H.M. Statistical weighted B-summability and its applications to approximation theorems. Appl. Math. Comput. 2017, 302, 80–96. [Google Scholar]
- Jena, B.B.; Paikray, S.K. Product of statistical probability convergence and its applications to Korovkin-type theorem. Miskolc Math. Notes 2019, 20, 969–984. [Google Scholar]
- Jena, B.B.; Paikray, S.K.; Dutta, H. On various new concepts of statistical convergence for sequences of random variables via deferred Cesàro mean. J. Math. Anal. Appl. 2020, 487, 123950. [Google Scholar] [CrossRef]
- Jena, B.B.; Paikray, S.K.; Misra, U.K. Approximation of periodic functions via statistical B-summability and its applications to approximation theorems. Indian J. Ind. Appl. Math. 2019, 10, 71–86. [Google Scholar] [CrossRef]
- Jena, B.B.; Paikray, S.K.; Misra, U.K. Inclusion theorems on general convergence and statistical convergence of (L,1,1)-summability using generalized Tauberian conditions. Tamsui Oxf. J. Inf. Math. Sci. 2017, 31, 101–115. [Google Scholar]
- Jena, B.B.; Paikray, S.K.; Mohiuddine, S.A.; Mishra, V.N. Relatively equi-statistical convergence via deferred Nörlund mean based on difference operator of fractional-order and related approximation theorems. AIMS Math. 2020, 5, 650–672. [Google Scholar] [CrossRef]
- Küçükaslan, M.; Yılmaztürk, M. On deferred statistical convergence of sequences. Kyungpook Math. J. 2016, 56, 357–366. [Google Scholar] [CrossRef] [Green Version]
- Mishra, L.N.; Patro, M.; Paikray, S.K.; Jena, B.B. A certain class of statistical deferred weighted A-summability based on (p,q)-integers and associated approximation theorems. Appl. Appl. Math. 2019, 14, 716–740. [Google Scholar]
- Srivastava, H.M.; Et, M. Lacunary statistical convergence and strongly lacunary summable functions of order α. Filomat 2017, 31, 1573–1582. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Jena, B.B.; Paikray, S.K. Deferred Cesàro statistical probability convergence and its applications to approximation theorems. J. Nonlinear Convex Anal. 2019, 20, 1777–1792. [Google Scholar]
- Srivastava, H.M.; Jena, B.B.; Paikray, S.K. A certain class of statistical probability convergence and its applications to approximation theorems. Appl. Anal. Discrete Math. 2020, in press. [Google Scholar]
- Móricz, F. Tauberian conditions under which statistical convergence follows from statistical summability (C,1). J. Math. Anal. Appl. 2002, 275, 277–287. [Google Scholar] [CrossRef] [Green Version]
- Mohiuddine, S.A.; Alotaibi, A.; Mursaleen, M. Statistical summability (C,1) and a Korovkin-type approximation theorem. J. Inequal. Appl. 2012, 2012, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Karakaya, V.; Chishti, T.A. Weighted statistical convergence. Iran. J. Sci. Technol. Trans. A Sci. 2009, 33, 219–223. [Google Scholar]
- Mursaleen, M.; Karakaya, V.; Ertürk, M.; Gürsoy, F. Weighted statistical convergence and its application to Korovkin-type approximation theorem. Appl. Math. Comput. 2012, 218, 9132–9137. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Jena, B.B.; Paikray, S.K.; Misra, U.K. A certain class of weighted statistical convergence and associated Korovkin type approximation theorems for trigonometric functions. Math. Methods Appl. Sci. 2018, 41, 671–683. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Jena, B.B.; Paikray, S.K.; Misra, U.K. Generalized equi-statistical convergence of the deferred Nörlund summability and its applications to associated approximation theorems. Rev. Real Acad. Cienc. ExactasFís. Natur. Ser. A Mat. 2018, 112, 1487–1501. [Google Scholar] [CrossRef]
- Jena, B.B.; Paikray, S.K.; Misra, U.K. Statistical deferred Cesàro summability and its applications to approximation theorems. Filomat 2018, 32, 2307–2319. [Google Scholar] [CrossRef] [Green Version]
- Kandemir, H.Ş. On I-deferred statistical convergence in topological groups. Maltepe J. Math. 2019, 1, 48–55. [Google Scholar]
- Paikray, S.K.; Jena, B.B.; Misra, U.K. Statistical deferred Cesàro summability mean based on (p,q)-integers with application to approximation theorems. In Advances in Summability and Approximation Theory; Mohiuddine, S.A., Acar, T., Eds.; Springer: Singapore, 2019; pp. 203–222. [Google Scholar]
- Dutta, H.; Paikray, S.K.; Jena, B.B. On statistical deferred Cesàro summability. In Current Trends in Mathematical Analysis and Its Interdisciplinary Applications; Dutta, H., Ljubiša Kočinac, D.R., Srivastava, H.M., Eds.; Springer Nature, Switzerland AG: Cham, Switzerland, 2019; pp. 885–909. [Google Scholar]
- Srivastava, H.M.; Jena, B.B.; Paikray, S.K.; Misra, U.K. Deferred weighted A-statistical convergence based upon the (p,q)-Lagrange polynomials and its applications to approximation theorems. J. Appl. Anal. 2018, 24, 1–16. [Google Scholar] [CrossRef]
- Das, A.A.; Jena, B.B.; Paikray, S.K.; Jati, R.K. Statistical deferred weighted summability and associated Korovokin-type approximation theorem. Nonlinear Sci. Lett. A 2018, 9, 238–245. [Google Scholar]
- Das, A.A.; Paikray, S.K.; Pradhan, T.; Dutta, H. Statistical (C,1)(E,μ)-summablity and associated fuzzy approximation theorems with statistical fuzzy rates. Soft Comput. 2019, 1–10. [Google Scholar] [CrossRef]
- Das, A.A.; Paikray, S.K.; Pradhan, T. Approximation of signals in the weighted Zygmund class via Euler-Hausdorff product summability mean of Fourier series. J. Indian Math. Soc. 2019, 86, 296–314. [Google Scholar]
- Paikray, S.K.; Dutta, H. On statistical deferred weighted B-convergence. In Applied Mathematical Analysis: Theory, Methods, and Applications; Dutta, H., Peters, J.F., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2019; pp. 655–678.B-convergence. In Applied Mathematical Analysis: Theory, Methods, and Applications; Dutta, H., Peters, J.F., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2019; pp. 655–678. [Google Scholar]
- Zraiqat, A.; Paikray, S.K.; Dutta, H. A certain class of deferred weighted statistical B-summability involving (p,q)-integers and analogous approximation theorems. Filomat 2019, 33, 1425–1444. [Google Scholar] [CrossRef] [Green Version]
- Patro, M.; Paikray, S.K.; Jena, B.B.; Dutta, H. Statistical deferred Riesz summability mean and associated approximation theorems for trigonometric functions. In Mathematical Modeling, Applied Analysis and Computation; Singh, J., Kumar, D., Dutta, H., Baleanu, D., Purohit, S.D., Eds.; Springer Nature, Singapore Private Limited: Singapore, 2019; pp. 53–67. [Google Scholar]
- Pradhan, T.; Jena, B.B.; Paikray, S.K.; Dutta, H.; Misra, U.K. On approximation of the rate of convergence of Fourier series in the generalized Hölder metric by deferred Nörlund mean. Afr. Mat. 2019, 30, 1119–1131. [Google Scholar] [CrossRef]
- Pradhan, T.; Paikray, S.K.; Das, A.A.; Dutta, H. On approximation of signals in the generalized Zygmund class via (E,1)(N,pn) summability means of conjugate Fourier series. Proyecciones J. Math. 2019, 38, 1015–1033. [Google Scholar] [CrossRef]
- Pradhan, T.; Paikray, S.K.; Jena, B.B.; Dutta, H. Statistical deferred weighted B-summability and its applications to associated approximation theorems. J. Inequal. Appl. 2018, 2018, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Agnew, R.P. On deferred Cesàro means. Ann. Math. 1932, 33, 413–421. [Google Scholar] [CrossRef]
- Al-Salam, W.A. Operational representations for the Laguerre and other polynomials. Duke Math. J. 1964, 31, 127–142. [Google Scholar] [CrossRef]
- Viskov, O.V.; Srivastava, H.M. New approaches to certain identities involving differential operators. J. Math. Anal. Appl. 1994, 186, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.-J.; Lin, S.-D.; Lu, H.-C.; Srivastava, H.M. Linearization of the products of the generalized Lauricella polynomials and the multivariable Laguerre polynomials via their integral representations. Stud. Sci. Math. Hung. 2013, 50, 373–391. [Google Scholar]
- Srivastava, H.M. A note on certain operational representations for the Laguerre polynomials. J. Math. Anal. Appl. 1989, 138, 209–213. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions; Halsted Press: New York, NY, USA; Ellis Horwood Limited: Chichester, UK; John Wiley and Sons: Brisbane, Australia; Toronto, ON, Canada, 1984. [Google Scholar]
- Altın, A.; Doǧru, O.; Taşdelen, F. The generalization of Meyer-König and Zeller operators by generating functions. J. Math. Anal. Appl. 2005, 312, 181–194. [Google Scholar] [CrossRef]
- Korovkin, P.P. Convergence of linear positive operators in the spaces of continuous functions. Dokl. Akad. Nauk. SSSR 1953, 90, 961–964. (In Russian) [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, H.M.; Jena, B.B.; Paikray, S.K. Statistical Deferred Nörlund Summability and Korovkin-Type Approximation Theorem. Mathematics 2020, 8, 636. https://doi.org/10.3390/math8040636
Srivastava HM, Jena BB, Paikray SK. Statistical Deferred Nörlund Summability and Korovkin-Type Approximation Theorem. Mathematics. 2020; 8(4):636. https://doi.org/10.3390/math8040636
Chicago/Turabian StyleSrivastava, Hari Mohan, Bidu Bhusan Jena, and Susanta Kumar Paikray. 2020. "Statistical Deferred Nörlund Summability and Korovkin-Type Approximation Theorem" Mathematics 8, no. 4: 636. https://doi.org/10.3390/math8040636
APA StyleSrivastava, H. M., Jena, B. B., & Paikray, S. K. (2020). Statistical Deferred Nörlund Summability and Korovkin-Type Approximation Theorem. Mathematics, 8(4), 636. https://doi.org/10.3390/math8040636