Next Article in Journal
Maclaurin Coefficient Estimates of Bi-Univalent Functions Connected with the q-Derivative
Previous Article in Journal
Finite Element Validation of an Energy Attenuator for the Design of a Formula Student Car
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On Two Bivariate Kinds of Poly-Bernoulli and Poly-Genocchi Polynomials

by
Cheon Seoung Ryoo
1 and
Waseem A. Khan
2,*
1
Department of Mathematics, Hannam University, Daejeon 34430, Korea
2
Department of Mathematics and Natural Sciences, Prince Mohammad Bin Fahd University, P.O Box 1664, Al Khobar 31952, Saudi Arabia
*
Author to whom correspondence should be addressed.
Mathematics 2020, 8(3), 417; https://doi.org/10.3390/math8030417
Submission received: 6 February 2020 / Revised: 9 March 2020 / Accepted: 10 March 2020 / Published: 14 March 2020

Abstract

:
In this paper, we introduce two bivariate kinds of poly-Bernoulli and poly-Genocchi polynomials and study their basic properties. Finally, we consider some relationships for Stirling numbers of the second kind related to bivariate kinds of poly-Bernoulli and poly-Genocchi polynomials.

1. Introduction

Numerous mathematicians including Kim and Ryoo [1], Kim and Kim [2], Kim et al. [3,4,5], Khan [6,7] have concentrated their study on polynomials and its combination with Bernoulli, Genocchi, Euler, and tangent numbers. One of the essential classes of these sequences is the class of Appell polynomials. Various numerical problem of functional equations associated with pure and applied mathematics in the theory of approximation, differential equations, summation techniques, interpolation problems, quadrature rules, and their multidimensional extensions (see [8,9]). The Appell polynomials A n ( z ) are defined by means of the following generating function
A ( t ) e z t = A 0 ( z ) + A 1 ( z ) t 1 ! + A 2 ( z ) t 2 2 ! + + A n ( z ) t n n ! + = n = 0 A n ( z ) t n n ! ,
where
A ( t ) = A 0 + A 1 t 1 ! + A 2 t 2 2 ! + + A n t n n ! + , A 0 0 .
Differentiating generating function (1) with respect z and equating the coefficients of t n n ! , we have
d d z A n ( z ) = n A n 1 ( z ) , A 0 ( z ) 0 , z = x + i y C , n N .
The special cases of Appell polynomials are the poly-Bernoulli and poly-Genocchi polynomials, (see [4,10]).
The poly-Bernoulli polynomials are defined by, (see [2,3,4,5,6,7,11])
Li k ( 1 e t ) e t 1 e x t = n = 0 B n ( k ) ( x ) t n n ! ,
where
Li k ( z ) = m = 1 z m m k , ( k Z )
is called the classical polylogarithm function, (see [1,2,3,4,5,6,7,10,11]).
For k = 1 in (2), we have
Li 1 ( 1 e t ) e t 1 e x t = t e t 1 e x t = n = 0 B n ( x ) t n n ! ,
where B n ( x ) are called the Bernoulli polynomials, (see [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]).
In (2015), Kim et al. [10] introduced the poly-Genocchi polynomials are defined by means of the following generating function
2 Li k ( 1 e t ) e t + 1 e x t = n = 0 G n ( k ) ( x ) t n n ! .
For k = 1 , we have
2 Li 1 ( 1 e t ) e t + 1 e x t = t e t 1 e x t = n = 0 G n ( x ) t n n ! ,
where G n ( x ) are called the Genocchi polynomials, (see [3,14]).
The Stirling numbers of the first kind are defined by the coefficients in the expansion of ( x ) n in terms of power of x as follows, (see [1,2,7])
( x ) n = x ( x 1 ) ( x n + 1 ) = l = 0 n S 1 ( n , l ) x l , ( n 0 ) .
Subsequently, the Stirling numbers of the second kind are defined by, (see [2,4,5])
( e t 1 ) n = n ! l = n S 2 ( l , n ) t l l ! , ( n 0 ) .
Recently, Jamei et al. [13,14] introduced and investigated the new type of Bernoulli and Genocchi polynomials defined by means of the following generating function
t e t 1 e x t cos y t = n = 0 B n ( c ) ( x , y ) t n n ! ,
t e t 1 e x t sin y t = n = 0 B n ( s ) ( x , y ) t n n ! ,
and
2 t e t + 1 e x t cos y t = n = 0 G n ( c ) ( x , y ) t n n ! ,
2 t e t + 1 e x t sin y t = n = 0 G n ( s ) ( x , y ) t n n ! ,
respectively.
They have also considered the two functions e x t cos y t and e x t sin y t as follows (see [12,13,14,15,16]):
e x t cos y t = k = 0 C k ( x , y ) t k k ! ,
and
e x t sin y t = k = 0 S k ( x , y ) t k k ! ,
where
C k ( x , y ) = j = 0 [ k 2 ] ( 1 ) j k 2 j x k 2 j y 2 j ,
and
S k ( x , y ) = j = 0 [ k 1 2 ] k 2 j + 1 ( 1 ) j x k 2 j 1 y 2 j + 1 .
In (2018), Kim and Ryoo [1] introduced the cosine Bernoulli polynomials of a complex variable, the sine Bernoulli polynomials of a complex variable and the cosine Euler polynomials of a complex variable, the sine Euler polynomials of a complex variable, respectively are defined as follows
t e t 1 e ( x + i y ) t = n = 0 B n ( x + i y ) t n n ! ,
and
2 e t + 1 e ( x + i y ) t = n = 0 E n ( x + i y ) t n n ! .
From (16) and (17), we get
t e t 1 e x t cos y t = n = 0 B n ( x + i y ) + B n ( x i y ) 2 t n n ! = n = 0 B n ( c ) ( x , y ) t n n ! ,
and
t e t 1 e x t sin y t = n = 0 B n ( x + i y ) B n ( x i y ) 2 i t n n ! = n = 0 B n ( s ) ( x , y ) t n n ! ,
2 e t + 1 e x t cos y t = n = 0 E n ( x + i y ) + E n ( x i y ) 2 t n n ! = n = 0 E n ( c ) ( x , y ) t n n ! ,
and
2 e t + 1 e x t sin y t = n = 0 E n ( x + i y ) E n ( x i y ) 2 i t n n ! = n = 0 E n ( s ) ( x , y ) t n n ! .
This article is organized as follows. In Section 2, we introduce the cosine poly-Bernoulli and sine poly-Bernoulli polynomials and derive some identities of these polynomials. In Section 3, we establish the cosine poly-Genocchi and sine poly-Genocchi polynomials and derive some identities of these polynomials. Finally Section 4, we investigated some relationships for Stirling numbers of the second kind related to poly-Bernoulli and poly-Genocchi polynomials.

2. Poly-Bernoulli Polynomials of Complex Variable

This section presents sine and cosine variant of poly-Bernoulli polynomials. These variants are processed by separating the real and imaginary parts of the complex poly-Bernoulli polynomials and study on their basic properties are expressed. Now, we consider the poly-Bernoulli polynomials that are given by the generating function
Li k ( 1 e t ) e t 1 e ( x + i y ) t = n = 0 B n ( k ) ( x + i y ) t n n ! .
On the other hand, we observe that, (see [1])
e ( x + i y ) t = e x t e i y t = e x t ( cos y t + i sin y t ) ,
Thus, by (18) and (19), we have
n = 0 B n ( k ) ( x + i y ) t n n ! = Li k ( 1 e t ) e t 1 e ( x + i y ) t = Li k ( 1 e t ) e t 1 e x t ( cos y t + i sin y t ) ,
and
n = 0 B n ( k ) ( x i y ) t n n ! = Li k ( 1 e t ) e t 1 e ( x i y ) t = Li k ( 1 e t ) e t 1 e x t ( cos y t i sin y t ) .
From (20) and (21), we get
Li k ( 1 e t ) e t 1 e x t cos y t = n = 0 B n ( k ) ( x + i y ) + B n ( k ) ( x i y ) 2 t n n ! ,
and
Li k ( 1 e t ) e t 1 e x t sin y t = n = 0 B n ( k ) ( x + i y ) B n ( k ) ( x i y ) 2 i t n n ! .
Definition 1.
The two bivariate kinds of cosine poly-Bernoulli polynomials B n ( k , c ) ( x , y ) and sine poly-Bernoulli polynomials B n ( k , s ) ( x , y ) , for non negative integer n are defined by
Li k ( 1 e t ) e t 1 e x t cos y t = n = 0 B n ( k , c ) ( x , y ) t n n ! , ( k Z )
and
Li k ( 1 e t ) e t 1 e x t sin y t = n = 0 B n ( k , s ) ( x , y ) t n n ! , ( k Z )
respectively.
Note that B n ( k , c ) ( x , 0 ) = B n ( k , c ) ( x ) , B n ( k , s ) ( x , 0 ) = 0 , ( n 0 ) .
For instance, we have
B 0 ( 2 , c ) ( x , y ) = 1 , B 1 ( 2 , c ) ( x , y ) = 3 4 + x , B 2 ( 2 , c ) ( x , y ) = 17 36 3 x 2 + x 2 y 2 ,
B 3 ( 2 , c ) ( x , y ) = 5 24 + 17 x 12 9 x 2 4 + x 3 + 9 y 2 4 3 x y 2 ,
B 4 ( 2 , c ) ( x , y ) = 7 450 5 x 6 + 17 x 2 6 3 x 3 + x 4 17 y 2 6 + 9 x y 2 6 x 2 y 2 + y 4 ,
B 5 ( 2 , c ) ( x , y ) = 7 120 + 7 x 90 25 x 2 12 + 85 x 3 18 15 x 4 4 + x 5 + 25 y 2 12 85 x y 2 6 + 45 x 2 y 2 2 10 x 3 y 2 15 y 4 4 + 5 x y 4 ,
B 6 ( 2 , c ) ( x , y ) = 38 2205 + 7 x 20 + 7 x 2 30 25 x 3 6 + 85 x 4 12 9 x 5 2 + x 6 7 y 2 30 + 25 x y 2 2 85 x 2 y 2 2
+ 45 x 3 y 2 15 x 4 y 2 + 85 y 4 12 45 x y 4 2 + 15 x 2 y 4 y 6 ,
and
B 0 ( 2 , s ) ( x , y ) = 0 , B 1 ( 2 , s ) ( x , y ) = y ,
B 2 ( 2 , s ) ( x , y ) = 3 y 2 + 2 x y ,
B 3 ( 2 , s ) ( x , y ) = 17 y 12 9 x y 2 + 3 x 2 y y 3 ,
B 4 ( 2 , s ) ( x , y ) = 5 y 6 + 17 x y 3 9 x 2 y + 4 x 3 y + 3 y 3 4 x y 3 ,
B 5 ( 2 , s ) ( x , y ) = 7 y 90 25 x y 6 + 85 x 2 y 6 15 x 3 y + 5 x 4 y 85 y 3 18 + 15 x y 3 10 x 2 y 3 + y 5 ,
B 6 ( 2 , s ) ( x , y ) = 7 y 20 + 7 x y 15 25 x 2 y 2 + 85 x 3 y 3 45 x 4 y 2 + 6 x 5 y + 25 y 3 6 85 x y 3 3
+ 45 x 2 y 3 20 x 3 y 3 9 y 5 2 + 6 x y 5 .
From (22)–(25), we have
B n ( k , c ) ( x , y ) = B n ( k ) ( x + i y ) + B n ( k ) ( x i y ) 2 ,
B n ( k , s ) ( x , y ) = B n ( k ) ( x + i y ) B n ( k ) ( x i y ) 2 i .
Remark 1.
For x = 0 in (24) and (25), we get new type polynomials as follows
Li k ( 1 e t ) e t 1 cos y t = n = 0 B n ( k , c ) ( y ) t n n ! , ( k Z )
and
Li k ( 1 e t ) e t 1 sin y t = n = 0 B n ( k , s ) ( y ) t n n ! , ( k Z )
respectively.
It is clear that
B n ( k , c ) ( 0 ) = B n ( k , c ) , B n ( k , s ) ( y ) = 0 , ( n 0 ) .
From (28) and (29), we can derive the following equations
n = 0 B n ( k , c ) ( y ) t n n ! = Li k ( 1 e t ) e t 1 cos y t
= n = 0 B n ( k , c ) t n n ! n = 0 ( 1 ) m y 2 m t n 2 m !
= n = 0 m = 0 [ n 2 ] n 2 m ( 1 ) m y 2 m B n 2 m ( k ) t n n ! ,
and
n = 0 B n ( k , s ) ( y ) t n n ! = Li k ( 1 e t ) e t 1 sin y t
= n = 0 m = 0 [ n 1 2 ] n 2 m + 1 ( 1 ) m y 2 m + 1 B n 2 m 1 ( k ) t n n ! .
Therefore, by (30) and (31), we get
B n ( k , c ) ( y ) = m = 0 [ n 2 ] n 2 m ( 1 ) m y 2 m B n 2 m ( k ) ,
and
B n ( k , s ) ( y ) = m = 0 [ n 1 2 ] n 2 m + 1 ( 1 ) m y 2 m + 1 B n 2 m 1 ( k ) .
Now, we start some basic properties of these polynomials.
Theorem 1.
For n 0 , we have
B n ( k ) ( x + i y ) = l = 0 n n l ( x + i y ) n l B l ( k )
= l = 0 n n l ( i y ) n l B l ( k ) ( x ) ,
and
B n ( k ) ( x i y ) = l = 0 n n l ( x i y ) n l B l ( k )
= l = 0 n n l ( 1 ) n l ( i y ) n l B l ( k ) ( x ) .
Proof. 
By using (20) and (21), we can easily get. So we omit the proof.  ☐
Theorem 2.
B n ( k , c ) ( x , y ) and B n ( k , s ) ( x , y ) can be represented in terms of poly-Bernoulli numbers as follows
B n ( k , c ) ( x , y ) = m = 0 n n m B n m ( k ) C m ( x , y ) ,
and
B n ( k , s ) ( x , y ) = m = 0 n n m B n m ( k ) S m ( x , y ) .
Proof. 
By noting the general identity, we have
n = 0 a n t n n ! m = 0 b n t m m ! = n = 0 m = 0 n a n m b m t n n ! .
Now
n = 0 B n ( k , c ) ( x , y ) t n n ! = Li k ( 1 e t ) e t 1 e x t cos y t = n = 0 B n ( k ) t n n ! m = 0 C m ( x , y ) t m m !
= n = 0 m = 0 n n m B n m ( k ) C m ( x , y ) t n n ! ,
which proves (36). The proof of (37) is similar. ☐
Theorem 3.
For every n Z + , the following formula holds true
B n ( k , c ) ( 1 x , y ) = ( 1 ) n B n ( k , c ) ( x , y ) ,
and
B n ( k , s ) ( 1 x , y ) = ( 1 ) n + 1 B n ( k , s ) ( x , y ) .
Proof. 
From (24), we have
n = 0 B n ( k , c ) ( 1 x , y ) t n n ! = Li k ( 1 e t ) e ( 1 x ) t e t 1 cos y t ,
as well as
n = 0 ( 1 ) n B n ( k , c ) ( x , y ) t n n ! = Li k ( 1 e t ) e x t e t 1 cos ( y t )
= Li k ( 1 e t ) e ( 1 x ) t e t 1 cos ( y t ) .
Similarly Equation (39) can be proved. ☐
Corollary 1.
For every n Z + , we have
B 2 n + 1 ( k , c ) 1 2 , y = 0 ,
and
B 2 n ( k , s ) 1 2 , y = 0 .
Theorem 4.
For every n Z + , the following formula holds true
B n ( k , c ) ( x + r , y ) = m = 0 n n m B m ( k , c ) ( x , y ) r n m ,
and
B n ( k , s ) ( x + r , y ) = m = 0 n n m B m ( k , s ) ( x , y ) r n m .
Proof. 
Replacing x by x + r in (24), we have
n = 0 B n ( k , c ) ( x + r , y ) t n n ! = Li k ( 1 e t ) e x t e t 1 cos y t e r t
= n = 0 B n ( k , c ) ( x , y ) t n n ! n = 0 r n t n n !
= n = 0 m = 0 n n m B m ( c , k ) ( x , y ) r n m t n n ! ,
which proves (40). The result (41) can be similarly proved. ☐
Theorem 5.
For every n N , the following formula holds true
B n ( k , c ) ( x , y ) x = n B n 1 ( k , c ) ( x , y ) ,
B n ( k , c ) ( x , y ) y = n B n 1 ( k , s ) ( x , y ) ,
and
B n ( k , s ) ( x , y ) x = n B n 1 ( k , s ) ( x , y ) ,
B n ( k , c ) ( x , y ) y = n B n 1 ( k , c ) ( x , y ) .
Proof. 
Equation (24) yields
n = 1 B n ( k , c ) ( x , y ) x t n n ! = t Li k ( 1 e t ) e x t e t 1 cos y t = n = 0 B n ( k , c ) ( x , y ) t n + 1 n !
= n = 0 B n 1 ( k , c ) ( x , y ) t n ( n 1 ) ! = n = 1 n B n 1 ( k , c ) ( x , y ) t n n ! ,
proving (42). Other (43), (44) and (45) can be similarly derived. ☐
Theorem 6.
For n 0 , the following formula holds true
B n ( 2 , c ) ( x , y ) = m = 0 n n m B m m ! m + 1 B n m ( c ) ( x , y ) ,
and
B n ( 2 , s ) ( x , y ) = m = 0 n n m B m m ! m + 1 B n m ( s ) ( x , y ) .
Proof. 
From Equation (24), we have
n = 0 B n ( k , c ) ( x , y ) t n n ! = Li k ( 1 e t ) e t 1 e x t cos y t
= e x t cos y t e t 1 0 t 1 e z 1 0 t 1 e z 1 · · · 1 e z 1 ( k 1 ) t i m e s 0 t z e z 1 d z d z .
In particular for k = 2 , we have
n = 0 B n ( 2 , c ) ( x , y ) t n n ! = e x t cos y t e t 1 0 t z e z 1 d z = m = 0 t m B m m + 1 t e t 1 e x t cos y t
= m = 0 B m m ! m + 1 t m m ! n = 0 B n ( c ) ( x , y ) t n n ! .
Replacing n by n m in R.H.S. of above equation, we have
= n = 0 m = 0 n n m B m m ! m + 1 B n m ( c ) ( x , y ) t n n ! .
On comparing the coefficients of t n n ! on both sides of the above equation, we get the result (46). The proof of (47) is similar. ☐

3. Poly-Genocchi Polynomials of Complex Variable

This section presents sine and cosine variant of poly-Genocchi polynomials. These variants are processed by separating the real and imaginary parts of the complex poly-Genocchi polynomials and study on their basic properties are expressed. Now, we consider the poly-Genocchi polynomials that are given by the generating function
2 Li k ( 1 e t ) e t + 1 e ( x + i y ) t = n = 0 G n ( k ) ( x + i y ) t n n ! .
By using (48) and (19), we have
n = 0 G n ( k ) ( x + i y ) t n n ! = 2 Li k ( 1 e t ) e t + 1 e ( x + i y ) t = 2 Li k ( 1 e t ) e t 1 e x t ( cos y t + i sin y t ) ,
and
n = 0 G n ( k ) ( x i y ) t n n ! = 2 Li k ( 1 e t ) e t + 1 e ( x i y ) t = 2 Li k ( 1 e t ) e t 1 e x t ( cos y t i sin y t ) .
From (49) and (50), we get
2 Li k ( 1 e t ) e t + 1 e x t cos y t = n = 0 G n ( k ) ( x + i y ) + G n ( k ) ( x i y ) 2 t n n ! ,
and
2 Li k ( 1 e t ) e t + 1 e x t sin y t = n = 0 G n ( k ) ( x + i y ) G n ( k ) ( x i y ) 2 i t n n ! .
Definition 2.
The two bivariate kinds of cosine poly-Genocchi polynomials G n ( k , c ) ( x , y ) and sine poly-Genocchi polynomials G n ( k , s ) ( x , y ) , for non negative integer n are defined by
2 Li k ( 1 e t ) e t + 1 e x t cos y t = n = 0 G n ( k , c ) ( x , y ) t n n ! , ( k Z )
and
2 Li k ( 1 e t ) e t + 1 e x t sin y t = n = 0 G n ( k , s ) ( x , y ) t n n ! , ( k Z )
respectively.
From (51)–(54), we have
G n ( k , c ) ( x , y ) = G n ( k ) ( x + i y ) + G n ( k ) ( x i y ) 2 ,
G n ( k , s ) ( x , y ) = G n ( k ) ( x + i y ) G n ( k ) ( x i y ) 2 i .
Note that
G n ( k , c ) ( x , 0 ) = G n ( k ) ( x ) , G n ( k , s ) ( x , 0 ) = 0 , ( n 0 ) .
The cosine poly-Genocchi and sine poly-Genocchi polynomials can be determined explicitly. A few of them are
G 2 ( 2 , c ) ( x , y ) = 3 2 + 2 x ,
G 3 ( 2 , c ) ( x , y ) = 11 12 9 x 2 + 3 x 2 3 y 2 ,
G 4 ( 2 , c ) ( x , y ) = 2 3 + 11 x 3 9 x 2 + 4 x 3 + 9 y 2 12 x y 2 ,
G 5 ( 2 , c ) ( x , y ) = 77 60 + 10 x 3 + 55 x 2 6 15 x 3 + 5 x 4 55 y 2 6 + 45 x y 2 30 x 2 y 2 + 5 y 4 ,
G 6 ( 2 , c ) ( x , y ) = 31 15 77 x 10 + 10 x 2 + 55 x 3 3 45 x 4 2 + 6 x 5 10 y 2 55 x y 2 + 135 x 2 y 2 60 x 3 y 2 45 y 4 2 + 30 x y 4 ,
and
G 2 ( 2 , s ) ( x , y ) = 2 y ,
G 3 ( 2 , s ) ( x , y ) = 9 y 2 + 6 x y ,
G 4 ( 2 , s ) ( x , y ) = 11 y 3 18 x y + 12 x 2 y 4 y 3 ,
G 5 ( 2 , s ) ( x , y ) = 10 y 3 + 55 x y 3 45 x 2 y + 20 x 3 y + 15 y 3 20 x y 3 ,
G 6 ( 2 , s ) ( x , y ) = 77 y 10 + 20 x y + 55 x 2 y 90 x 3 y + 30 x 4 y 55 y 3 3 + 90 x y 3 60 x 2 y 3 + 6 y 5 .
Remark 2.
For x = 0 in (53) and (54), we get new type polynomials as follows
2 Li k ( 1 e t ) e t + 1 cos y t = n = 0 G n ( k , c ) ( y ) t n n ! , ( k Z )
and
2 Li k ( 1 e t ) e t + 1 sin y t = n = 0 G n ( k , s ) ( y ) t n n ! , ( k Z )
respectively.
It is clear that
G n ( k , c ) ( 0 ) = G n ( k , c ) , G n ( k , s ) ( y ) = 0 , ( n 0 ) .
From (55) and (56), we can derive the following equations
n = 0 G n ( k , c ) ( y ) t n n ! = 2 Li k ( 1 e t ) e t + 1 cos y t
= n = 0 G n ( k ) t n n ! n = 0 ( 1 ) m y 2 m t n 2 m !
= n = 0 m = 0 [ n 2 ] n 2 m ( 1 ) m y 2 m G n 2 m ( k ) t n n ! ,
and
n = 0 G n ( k , s ) ( y ) t n n ! = 2 Li k ( 1 e t ) e t + 1 sin y t
= n = 0 m = 0 [ n 1 2 ] n 2 m + 1 ( 1 ) m y 2 m + 1 G n 2 m 1 ( k ) t n n ! .
Therefore, by (57) and (58), we get
G n ( k , c ) ( y ) = m = 0 [ n 2 ] n 2 m ( 1 ) m y 2 m G n 2 m ( k ) ,
and
G n ( k , s ) ( y ) = m = 0 [ n 1 2 ] n 2 m + 1 ( 1 ) m y 2 m + 1 G n 2 m 1 ( k ) .
Theorem 7.
For n 0 , we have
G n ( k ) ( x + i y ) = l = 0 n n l ( x + i y ) n l G l ( k )
= l = 0 n n l ( i y ) n l G l ( k ) ( x ) ,
and
G n ( k ) ( x i y ) = l = 0 n n l ( x i y ) n l G l ( k )
= l = 0 n n l ( 1 ) n l ( i y ) n l G l ( k ) ( x ) .
Proof. 
By using (50) and (51), we can easily get. So we omit the proof. ☐
Theorem 8.
G n ( k , c ) ( x , y ) and G n ( k , s ) ( x , y ) can be represented in terms of poly-Genocchi numbers as follows
G n ( k , c ) ( x , y ) = m = 0 n n m G n m ( k ) C m ( x , y ) .
and
G n ( k , s ) ( x , y ) = m = 0 n n m G n m ( k ) S m ( x , y ) .
Proof. 
By noting the general identity, we have
n = 0 a n t n n ! m = 0 b n t m m ! = n = 0 m = 0 n a n m b m t n n ! .
Now
n = 0 G n ( k , c ) ( x , y ) t n n ! = Li k ( 1 e t ) e t 1 e x t cos y t = n = 0 G n ( k ) t n n ! m = 0 C m ( x , y ) t m m !
= n = 0 m = 0 n n m G n m ( k ) C m ( x , y ) t n n ! ,
which proves (63). The proof of (64) is similar. ☐
Theorem 9.
For every n Z + , the following formula holds true
G n ( k , c ) ( 1 x , y ) = ( 1 ) n G n ( k , c ) ( x , y ) ,
and
G n ( k , s ) ( 1 x , y ) = ( 1 ) n + 1 G n ( k , s ) ( x , y ) .
Proof. 
From (53), we have
n = 0 G n ( k , c ) ( 1 x , y ) t n n ! = 2 Li k ( 1 e t ) e ( 1 x ) t e t + 1 cos y t ,
as well as
n = 0 ( 1 ) n G n ( k , c ) ( x , y ) t n n ! = 2 Li k ( 1 e t ) e x t e t + 1 cos ( y t )
= Li k ( 1 e t ) e ( 1 x ) t e t 1 cos ( y t ) .
Similarly Equation (66) can be proved. ☐
Theorem 10.
For every n Z + , the following formula holds true
G n ( k , c ) ( x + r , y ) = m = 0 n n m G m ( k , c ) ( x , y ) r n m ,
and
G n ( k , s ) ( x + r , y ) = m = 0 n n m G m ( k , s ) ( x , y ) r n m .
Proof. 
Replacing x by x + r in (53). we have
n = 0 G n ( k , c ) ( x + r , y ) t n n ! = 2 Li k ( 1 e t ) e x t e t + 1 cos y t e r t
= n = 0 G n ( k , c ) ( x , y ) t n n ! n = 0 r n t n n !
= n = 0 m = 0 n n m G m ( k , c ) ( x , y ) r n m t n n ! ,
which proves (67). The result (68) can be similarly proved. ☐
Theorem 11.
For every n N , the following formula holds true
G n ( k , c ) ( x , y ) x = n G n 1 ( k , c ) ( x , y ) ,
G n ( k , c ) ( x , y ) y = n G n 1 ( k , s ) ( x , y ) ,
and
G n ( k , s ) ( x , y ) x = n G n 1 ( k , s ) ( x , y ) ,
G n ( k , s ) ( x , y ) y = n G n 1 ( k , c ) ( x , y ) .
Proof. 
Equation (53) yields
n = 1 G n ( k , c ) ( x , y ) x t n n ! = 2 t Li k ( 1 e t ) e x t e t + 1 cos y t = n = 0 G n ( k , c ) ( x , y ) t n + 1 n !
= n = 0 G n 1 ( k , c ) ( x , y ) t n ( n 1 ) ! = n = 1 n G n 1 ( k , c ) ( x , y ) t n n ! ,
proving (69). Other (70), (71) and (72) can be similarly derived. ☐
Theorem 12.
For n 0 , the following formula holds true
G n ( 2 , c ) ( x , y ) = m = 0 n n m B m m ! m + 1 G n m ( c ) ( x , y ) ,
and
G n ( 2 , s ) ( x , y ) = m = 0 n n m B m m ! m + 1 G n m ( s ) ( x , y ) .
Proof. 
From Equation (53), we have
n = 0 G n ( k , c ) ( x , y ) t n n ! = 2 Li k ( 1 e t ) e t + 1 e x t cos y t
= 2 e x t cos y t e t + 1 0 t 1 e z 1 0 t 1 e z 1 · · · 1 e z 1 ( k 1 ) t i m e s 0 t z e z 1 d z d z .
In particular for k = 2 , we have
n = 0 G n ( 2 , c ) ( x , y ) t n n ! = 2 e x t cos y t e t + 1 0 t z e z 1 d z = m = 0 t m B m m + 1 2 t e t + 1 e x t cos y t
= m = 0 B m m ! m + 1 t m m ! n = 0 G n ( c ) ( x , y ) t n n ! .
Replacing n by n m in R.H.S. of above equation, we have
= n = 0 m = 0 n n m B m m ! m + 1 G n m ( c ) ( x , y ) t n n ! .
On comparing the coefficients of t n n ! on both sides of the above equation, we get the result (73). The proof of (74) is similar. ☐

4. Relationship between Stirling Numbers of the Second Kind

In this section, we prove some relationships for Stirling numbers of the second kind related to poly-Bernoulli polynomials of complex variable and poly-Genocchi polynomials of complex variable. We start a following theorem.
Theorem 13.
For every n Z + , the following formula holds true
B n ( k , c ) ( 1 + x , y ) B n ( k , c ) ( x , y ) = p = 1 n l = 1 p ( 1 ) l + p l k l ! S 2 ( p , l ) n p C n p ( x , y ) ,
and
B n ( k , s ) ( 1 + x , y ) B n ( k , s ) ( x , y ) = p = 1 n l = 1 p ( 1 ) l + p l k l ! S 2 ( p , l ) n p S n p ( x , y ) .
Proof. 
Using (24), we have
n = 0 B n ( k , c ) ( 1 + x , y ) t n n ! = Li k ( 1 e t ) e x t ( e t 1 + 1 ) e t 1 cos y t
= Li k ( 1 e t ) e x t cos y t + Li k ( 1 e t ) e x t e t 1 cos y t
n = 0 B n ( k , c ) ( 1 + x , y ) t n n ! n = 0 B n ( k , c ) ( x , y ) t n n !
= p = 1 l = 1 p ( 1 ) l + p l k l ! S 2 ( p , l ) t p p ! e x t cos y t ,
= p = 1 l = 1 p ( 1 ) l + p l k l ! S 2 ( p , l ) t p p ! n = 0 C n ( x , y ) t n n ! .
Replacing n by n p in the above equation and comparing the coefficients of t n n ! on either side, we get the result (75). The proof of (76) is similar. ☐
Corollary 2.
For k = 1 in Theorem 4.1, we get
B n ( c ) ( 1 + x , y ) B n ( c ) ( x , y ) = n C n 1 ( x , y ) ,
and
B n ( s ) ( 1 + x , y ) B n ( s ) ( x , y ) = n S n 1 ( x , y ) .
Theorem 14.
For n 0 , the following formula holds true
B n ( k , c ) ( x , y ) = l = 0 i = l n n i ( x ) l S 2 ( i , l ) B n i ( k , c ) ( y ) ,
and
B n ( k , s ) ( x , y ) = l = 0 i = l n n i ( x ) l S 2 ( i , l ) B n i ( k , s ) .
Proof. 
From (24), we have
n = 0 B n ( k , c ) ( x , y ) t n n ! = Li k ( 1 e t ) e t 1 ( ( e t ) + 1 ) x cos y t
= Li k ( 1 e t ) e t 1 n = 0 x l ( e t 1 ) l
= l = 0 ( x ) l ( e t 1 ) l l ! Li k ( 1 e t ) e t 1 cos y t
= l = 0 ( x ) l n = 0 S 2 ( , l ) t n n ! n = 0 B n ( k , c ) ( y ) t n n !
= n = 0 l = 0 i = l n n i ( x ) l S 2 ( i , l ) B n i ( k , c ) ( y ) t n n ! .
By comparing the coefficients of t n on both sides , we get (77). The proof of (78) is similar. ☐
Theorem 15.
For n 0 , the following formula holds true
B n ( k , c ) ( x , y ) = p = 0 n l = 1 p + 1 ( 1 ) l + p + 1 l ! S 2 ( p + 1 , l ) l k ( p + 1 ) n p B n p ( c ) ( x , y ) ,
and
B n ( k , s ) ( x , y ) = p = 0 n l = 1 p + 1 ( 1 ) l + p + 1 l ! S 2 ( p + 1 , l ) l k ( p + 1 ) n p B n p ( s ) ( x , y ) .
Proof. 
From Equation (24), we have
n = 0 B n ( k , c ) ( x , y ) t n n ! = Li k ( 1 e t ) t t e t 1 e x t cos y t .
Now
1 t Li k ( 1 e t ) = 1 t l = 1 ( 1 e t ) l l k = 1 t l = 1 ( 1 ) l l k ( 1 e t ) l ,
= 1 t l = 1 ( 1 ) l l k l ! p = l ( 1 ) p S 2 ( p , l ) t p p ! ,
= 1 t p = 1 l = 1 p ( 1 ) l + p l k l ! S 2 ( p , l ) t p p ! ,
= p = 0 l = 1 p + 1 ( 1 ) l + p + 1 l k l ! S 2 ( p + 1 , l ) p + 1 t p p ! .
Thus, by (81) and (82), we obtain
n = 0 B n ( k , c ) ( x , y ) t n n ! = p = 0 l = 1 p + 1 ( 1 ) l + p + 1 l k l ! S 2 ( p + 1 , l ) p + 1 t p p ! n = 0 B n ( c ) ( x , y ) t n n ! .
Now replacing n by n p in the above equation and comparing the coefficients of t n n ! on either side, we get the result (79). The proof of (80) is similar. ☐
Theorem 16.
For d N with d 1 ( m o d 2 ) , we have
B n ( k , c ) ( x , y ) = p = 0 n n p d n p 1 l = 0 p + 1 a = 0 d 1 ( 1 ) l + p + 1 l ! S 2 ( p + 1 , l ) l k ( 1 ) a B n p ( c ) a + x d , y ,
and
B n ( k , s ) ( x , y ) = p = 0 n n p d n p 1 l = 0 p + 1 a = 0 d 1 ( 1 ) l + p + 1 l ! S 2 ( p + 1 , l ) l k ( 1 ) a B n p ( s ) a + x d , y .
Proof. 
From Equation (24) can be written as
n = 0 B n ( k , c ) ( x , y ) t n n ! = Li k ( 1 e t ) e t 1 e x t cos y t
= Li k ( 1 e t ) t t e d t 1 a = 0 d 1 ( 1 ) a e ( a + x ) t cos y t ,
= p = 0 l = 1 p + 1 ( 1 ) l + p + 1 l k l ! S 2 ( p + 1 , l ) p + 1 t p p ! m = 0 d m 1 a = 0 d 1 ( 1 ) a B n ( c ) a + x d , y t n n ! .
Replacing n by n p in the above equation and comparing the coefficients of t n n ! on either side, we get the result (83). The proof of (84) is similar. ☐
Theorem 17.
For every n Z + , the following formula holds true
G n ( k , c ) ( 1 + x , y ) + G n ( k , c ) ( x , y ) = p = 1 n l = 1 p ( 1 ) l + p l k l ! S 2 ( p , l ) n p C n p ( x , y ) ,
and
G n ( k , s ) ( 1 + x , y ) + G n ( k , s ) ( x , y ) = p = 1 n l = 1 p ( 1 ) l + p l k l ! S 2 ( p , l ) n p S n p ( x , y ) .
Proof. 
Using (53), we have
n = 0 G n ( k , s ) ( 1 + x , y ) t n n ! = 2 Li k ( 1 e t ) e x t ( e t 1 + 1 ) e t + 1 cos y t
= 2 Li k ( 1 e t ) e x t cos y t 2 Li k ( 1 e t ) e x t e t + 1 cos y t
n = 0 B n ( c , k ) ( 1 + x , y ) t n n ! + n = 0 B n ( k , c ) ( x , y ) t n n !
= 2 p = 1 l = 1 p ( 1 ) l + p l k l ! S 2 ( p , l ) t p p ! e x t cos y t ,
= 2 p = 1 l = 1 p ( 1 ) l + p l k l ! S 2 ( p , l ) t p p ! n = 0 C n ( x , y ) t n n ! .
Replacing n by n p in the above equation and comparing the coefficients of t n n ! on either side, we get the result (85). The proof of (86) is similar. ☐
Theorem 18.
For n 0 , the following formula holds true
B n ( k , c ) ( x , y ) = p = 0 n l = 1 p + 1 ( 1 ) l + p + 1 l ! S 2 ( p + 1 , l ) l k ( p + 1 ) n p G n p ( c ) ( x , y ) ,
and
G n ( k , s ) ( x , y ) = p = 0 n l = 1 p + 1 ( 1 ) l + p + 1 l ! S 2 ( p + 1 , l ) l k ( p + 1 ) n p G n p ( s ) ( x , y ) .
Proof. 
From Equation (53), we have
n = 0 B n ( k , c ) ( x , y ) t n n ! = Li k ( 1 e t ) t 2 t e t + 1 e x t cos y t .
Now
1 t Li k ( 1 e t ) = 1 t l = 1 ( 1 e t ) l l k = 1 t l = 1 ( 1 ) l l k ( 1 e t ) l ,
= 1 t l = 1 ( 1 ) l l k l ! p = l ( 1 ) p S 2 ( p , l ) t p p ! ,
= 1 t p = 1 l = 1 p ( 1 ) l + p l k l ! S 2 ( p , l ) t p p ! ,
= p = 0 l = 1 p + 1 ( 1 ) l + p + 1 l k l ! S 2 ( p + 1 , l ) p + 1 t p p ! .
Thus (89) and (90), we obtain
n = 0 G n ( k , c ) ( x , y ) t n n ! = p = 0 l = 1 p + 1 ( 1 ) l + p + 1 l k l ! S 2 ( p + 1 , l ) p + 1 t p p ! n = 0 G n ( c ) ( x , y ) t n n ! .
Now replacing n by n p in the above equation and comparing the coefficients of t n n ! on either side, we get the result (87). The proof of (88) is similar. ☐
Theorem 19.
For d N with d 1 ( m o d 2 ) , we have
G n ( k , c ) ( x , y ) = p = 0 n n p d n p 1 l = 0 p + 1 a = 0 d 1 ( 1 ) l + p + 1 l ! S 2 ( p + 1 , l ) l k ( 1 ) a G n p ( c ) a + x d , y ,
and
G n ( k , s ) ( x , y ) = p = 0 n n p d n p 1 l = 0 p + 1 a = 0 d 1 ( 1 ) l + p + 1 l ! S 2 ( p + 1 , l ) l k ( 1 ) a G n p ( s ) a + x d , y .
Proof. 
Now Equation (53) can be written as
n = 0 G n ( k , c ) ( x , y ) t n n ! = 2 Li k ( 1 e t ) e t + 1 e x t cos y t
= Li k ( 1 e t ) t 2 t e d t + 1 a = 0 d 1 ( 1 ) a e ( a + x ) t cos y t ,
= p = 0 l = 1 p + 1 ( 1 ) l + p + 1 l k l ! S 2 ( p + 1 , l ) p + 1 t p p ! n = 0 d n 1 a = 0 d 1 ( 1 ) a G n ( c ) a + x d , y t n n ! .
Replacing n by n p in the above equation and comparing the coefficients of t n n ! on either side, we get the result (91). The proof of (92) is similar. ☐

5. Conclusions

In this paper, we introduced the bivariate kind of poly-Bernoulli and poly-Genocchi polynomials by defining the two specific generating functions. We also investigate some analytical properties (for example, summation formulae, differential formulae and relations with other well-known polynomials and numbers) for our introduced polynomials in a systematic way. We also derived new identities and relations involving the Stirling numbers of the second kind. The results of this article may potentially be used in mathematics, in mathematical physics, and engineering.

Author Contributions

C.S.R. and W.A.K. have equally contributed to this work. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST) (No. 2017R1A2B4006092).

Acknowledgments

The authors would like to thank the referees for their valuable comments.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Kim, T.; Ryoo, C.S. Some identities for Euler and Bernoulli polynomials and their zeros. Axioms 2018, 7, 56. [Google Scholar] [CrossRef] [Green Version]
  2. Kim, D.S.; Kim, T. A note on poly-Bernoulli and higher order poly-Bernoulli polynomials. Russian J. Math. Phys. 2015, 22, 26–33. [Google Scholar] [CrossRef]
  3. Kim, T. Some identities for the Bernoulli, the Euler and the Genocchi numbers and polynomials. Adv. Stud. Contemp. Math. 2010, 20, 23–28. [Google Scholar]
  4. Kim, T.; Jang, Y.S.; Seo, J.J. poly-Bernoulli polynomials and their applications. Int. J. Math. Anal. 2014, 8, 1495–1503. [Google Scholar] [CrossRef]
  5. Kim, T.; Kwon, H.K.; Lee, S.H.; Seo, J.J. A note on poly-Bernoulli numbers and polynomials of the second kind. Adv. Differ. Equ. 2014, 2014, 219. [Google Scholar] [CrossRef] [Green Version]
  6. Khan, W.A. A note on Hermite-based poly-Euler and multi poly-Euler polynomials. Palest. J. Math. 2017, 6, 204–214. [Google Scholar]
  7. Khan, W.A. A note on degenerate Hermite poly-Bernoulli numbers and polynomials. J. Class. Anal. 2016, 8, 65–76. [Google Scholar] [CrossRef]
  8. Avram, F.; Taqqu, M.S. Noncentral limit theorems and Appell polynomials. Ann. Probab. 1987, 15, 767–775. [Google Scholar] [CrossRef]
  9. Tempesta, P. Formal groups, Bernoulli type polynomial and L-series. C. R. Math. Acad. Sci. Paris 2007, 345, 303–306. [Google Scholar] [CrossRef]
  10. Kim, T.; Jang, Y.S.; Seo, J.J. A note on poly-Genocchi numbers and polynomials. Appl. Math. Sci. 2014, 8, 4475–4781. [Google Scholar] [CrossRef] [Green Version]
  11. Kaneko, M. poly-Bernoulli numbers. J. Theor. Nombres. 1997, 9, 221–228. [Google Scholar] [CrossRef]
  12. Jamei, M.M.; Beyki, M.R.; Koepf, W. A new type of Euler polynomials and numbers. Mediterr. J. Math. 2018, 15, 138. [Google Scholar] [CrossRef]
  13. Jamei, M.M.; Beyki, M.R.; Koepf, W. On a bivariate kind of Bernoulli polynomials. Bull. Sci. Math. 2019, 156. [Google Scholar] [CrossRef]
  14. Jamei, M.M.; Beyki, M.R.; Omey, E. On a parametric kind of Genocchi polynomials. J. Inequal. Spec. Funct. 2018, 9, 68–81. [Google Scholar]
  15. Jamei, M.M.; Beyki, M.R.; Koepf, W. Symbolic computation of some power trigonometric series. J. Symb. Comput. 2017, 80, 273–284. [Google Scholar] [CrossRef]
  16. Srivastava, H.M.; Jamei, M.; Beyki, M.R. A parametric kind type of the Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials. Appl. Math. Inf. Sci. 2018, 12, 907–916. [Google Scholar] [CrossRef]

Share and Cite

MDPI and ACS Style

Ryoo, C.S.; Khan, W.A. On Two Bivariate Kinds of Poly-Bernoulli and Poly-Genocchi Polynomials. Mathematics 2020, 8, 417. https://doi.org/10.3390/math8030417

AMA Style

Ryoo CS, Khan WA. On Two Bivariate Kinds of Poly-Bernoulli and Poly-Genocchi Polynomials. Mathematics. 2020; 8(3):417. https://doi.org/10.3390/math8030417

Chicago/Turabian Style

Ryoo, Cheon Seoung, and Waseem A. Khan. 2020. "On Two Bivariate Kinds of Poly-Bernoulli and Poly-Genocchi Polynomials" Mathematics 8, no. 3: 417. https://doi.org/10.3390/math8030417

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop