Properties of Functions Formed Using the Sakaguchi and Gao-Zhou Concept
Abstract
:1. Introduction
2. Preliminary Results
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Duren, P.L. Univalent Functions; Springer: New York, NY, USA, 1983. [Google Scholar]
- Goodman, A.W. Univalent Functions; Mariner Publication Company: Tampa, FL, USA, 1983. [Google Scholar]
- Sakaguchi, K. On a Certain Univalent Mapping. J. Math. Soc. Jpn. 1958, 11, 72–75. [Google Scholar] [CrossRef]
- Chand, R.; Singh, P. On Certain Schlicht Mappings. Indian J. Pure Appl. Math. 1979, 10, 142–149. [Google Scholar]
- Gao, C.Y.; Zhou, S.Q. On a Class of Analytic Functions Related to the Starlike Functions. Kyungpook Math. J. 2005, 45, 123–130. [Google Scholar]
- Wang, Z.G.; Gao, C.Y.; Yuan, S.M. On Certain New Subclass of Close-to-Convex Functions. Mat. Vesn. 2006, 58, 119–124. [Google Scholar]
- Chung, Y.L.; Mohd, M.H.; Lee, S.K. On a Subclass of Close-to-Convex Functions. Bull. Iran. Math. Soc. 2018, 44, 611–621. [Google Scholar] [CrossRef] [Green Version]
- Darwish, H.E.; Lashin, A.Y.; Sowileh, S.M. Some Properties for α-Starlike Functions with Respect to k-Symmetric Points of Complex Order. Ann. Univ. Mariae Curie-Sklodowska Sect. A 2017, 71, 1–9. [Google Scholar] [CrossRef]
- Goyal, S.P.; Singh, O. Certain Subclasses of Close-to-Convex Functions. Vietnam J. Math. 2014, 42, 53–62. [Google Scholar] [CrossRef]
- Kant, S. Sharp Fekete-Szegö Coefficients Functional, Distortion and Growth Inequalities for Certain p-valent Close-to-Convex Functions. J. Class. Anal. 2018, 12, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Kowalczyk, J.; Leś-Bomba, E. On a Subclass of Close-to-Convex Functions. Appl. Math. Lett. 2010, 23, 1147–1151. [Google Scholar] [CrossRef] [Green Version]
- Seker, B. On Certain New Subclass of Close-to-Convex Functions. Appl. Math. Comput. 2011, 218, 1041–1045. [Google Scholar]
- Wang, Z.G.; Gao, C.Y.; Orhan, H.; Akbulut, S. Some Subclasses of Close-to-Convex and Quasi-Convex Functions with Respect to k-Symmetric Points. Gen. Math. 2007, 15, 107–119. [Google Scholar]
- Silverman, H. Convexity Theorems for Subclasses of Univalent Functions. Pac. J. Math. 1976, 1, 253–263. [Google Scholar] [CrossRef] [Green Version]
- Libera, R.J. Some Radius of Convexity Problems. Duke Math. J. 1964, 31, 143–158. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosiun, J.A.A.; Abdul Halim, S. Properties of Functions Formed Using the Sakaguchi and Gao-Zhou Concept. Mathematics 2020, 8, 310. https://doi.org/10.3390/math8030310
Mosiun JAA, Abdul Halim S. Properties of Functions Formed Using the Sakaguchi and Gao-Zhou Concept. Mathematics. 2020; 8(3):310. https://doi.org/10.3390/math8030310
Chicago/Turabian StyleMosiun, Jonathan Aaron Azlan, and Suzeini Abdul Halim. 2020. "Properties of Functions Formed Using the Sakaguchi and Gao-Zhou Concept" Mathematics 8, no. 3: 310. https://doi.org/10.3390/math8030310
APA StyleMosiun, J. A. A., & Abdul Halim, S. (2020). Properties of Functions Formed Using the Sakaguchi and Gao-Zhou Concept. Mathematics, 8(3), 310. https://doi.org/10.3390/math8030310