On Differential Equations Associated with Perturbations of Orthogonal Polynomials on the Unit Circle
Abstract
:1. Introduction
2. A General Approach to Obtain Second Order Differential Equations
An Alternative Expression for the Differential Equation
3. Holonomic ODE for Spectral Perturbations of OPUC
3.1. OPUC and Canonical Spectral Transformations
- 1.
- Forward and backward recurrence relations. For and we have
- 2.
- 3.
- 4.
- Christoffel transformation [27]
- Uvarov transformation with one mass [27]
- Uvarov transformation with two masses [27]
- Geronimus transformation [28]
- Christoffel transformation
- Uvarov transformation with one mass
- Uvarov transformation with two masses
- Geronimus transformation
- For the Lebesgue measure , we have (see [25]) , , and therefore for every . This means that we have , and thus and for every . On the other hand, since , , we have that the connection formula for the Christoffel transformation becomes
- For the normalized Bernstein–Szegő measure with parameter β, with , defined by , we have (see [25]) for , so that for every . Notice that if we choose , where α is the parameter of the Christoffel transformation, then we have for every and, as a consequence, we have in the corresponding connection formula
3.2. An Uvarov Perturbation of the Circular Jacobi Polynomials
3.3. A Christoffel Transformation of the Bernstein–Szegő Polynomials
4. Coherent Pairs of Measures on
- if is the Lebesgue measure, then
- if is the Lebesgue measure, then
5. Conclusions and Open Problems
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Routh, E. On some properties of certain solutions of a differential equation of the second-order. Proc. Lond. Math. Soc. 1885, 16, 245–261. [Google Scholar] [CrossRef] [Green Version]
- Bochner, S. Űber Sturm-Liouvillesche Polynomsysteme. Math. Zeit. 1929, 29, 730–736. [Google Scholar] [CrossRef]
- Celeghini, E.; del Olmo, M.A. Algebraic special functions and SO(3, 2). Ann. Phys. 2013, 333, 90–103. [Google Scholar] [CrossRef] [Green Version]
- Celeghini, E.; del Olmo, M.A. Coherent orthogonal polynomials. Ann. Phys. 2013, 335, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Celeghini, E.; del Olmo, M.A.; Velasco, M.A. Lie groups, algebraic special functions and Jacobi polynomials. J. Phys. Conf. Ser. 2015, 597, 012023. [Google Scholar] [CrossRef] [Green Version]
- Celeghini, E.; Gadella, M.; del Olmo, M.A. Groups, Special Functions and Rigged Hilbert Spaces. Axioms 2019, 8, 89. [Google Scholar] [CrossRef] [Green Version]
- Pathan, M.A.; Agarwal, R.; Jain, S. A unified study of orthogonal polynomials via Lie algebra. Rep. Math. Phys. 2017, 79, 1–11. [Google Scholar] [CrossRef]
- Zhedanov, A. Rational spectral transformations and orthogonal polynomials. J. Comput. Appl. Math. 1997, 85, 67–83. [Google Scholar] [CrossRef] [Green Version]
- Bueno, M.; Marcellán, F. Darboux transformations and perturbations of linear functionals. Linear Algebra Appl. 2004, 384, 215–242. [Google Scholar] [CrossRef]
- Krall, H.L. On Orthogonal Polynomials Satisfying a Certain Fourth Order Differential Equation; Pennsylvania State College Studies 6: State College, PA, USA, 1940. [Google Scholar]
- Krall, A.M. Orthogonal Polynomials satisfying fourth order differential equations. Proc. R. Soc. Edinburgh Sect. A 1981, 87, 271–288. [Google Scholar] [CrossRef]
- Ronveaux, A.; Marcellan, F. Differential Equation for Classical-Type Orthogonal Polynomials. Can. Math. Bull. 1989, 32, 404–411. [Google Scholar] [CrossRef]
- Dueñas, H.; Marcellán, F. The holonomic equation of the Laguerre Sobolev type Orthogonal Polynomials: A nondiagonal case. J. Differ. Eq. Appl. 2011, 17, 877–887. [Google Scholar] [CrossRef]
- Dueñas, H.; Marcellán, F. Laguerre-Type orthogonal polynomials. Electrostatic interpretation. Int. J. Pure Appl. Math. 2007, 38, 345–358. [Google Scholar]
- Dueñas, H.; Marcellán, F. Jacobi-Type orthogonal polynomials: Holonomic equation and electrostatic interpretation. Comm. Anal. Theory Cont. Frac. 2008, 15, 4–19. [Google Scholar]
- Dueñas, H.; Marcellán, F. The Laguerre-Sobolev-type orthogonal polynomials. Holonomic equation and electrostatic interpretation. Rocky Mount. J. Math. 2011, 41, 95–131. [Google Scholar] [CrossRef]
- Huertas, E.J.; Marcellán, F.; Pijeira, H. An Electrostatic Model for Zeros of Perturbed Laguerre Polynomials. Proc. Am. Math. Soc. 2014, 142, 1733–1747. [Google Scholar] [CrossRef]
- Marcellán, F.; Maroni, P. Orthogonal polynomials on the unit circle and their derivatives. Constr Approx. 1991, 7, 341–348. [Google Scholar] [CrossRef]
- Ismail, M.E.H. Classical and Quantum Orthogonal Polynomials in One Variable; Encyclopedia of Mathematics and its Applications; Cambridge University Press: Cambridge, UK, 2005; Volume 98. [Google Scholar]
- Ismail, M.E.H.; Witte, N.S. Discriminants and functional equations for polynomials orthogonal on the unit circle. J. Approx. Theory 2001, 110, 200–228. [Google Scholar] [CrossRef] [Green Version]
- Branquinho, A.; Rebocho, M.N. On differential equations for orthogonal polynomials on the unit circle. J. Math. Anal. Appl. 2009, 356, 242–256. [Google Scholar] [CrossRef]
- Borrego-Morell, J.; Sri Ranga, A. Orthogonal polynomials on the unit circle satisfying a second-order differential equation with varying polynomial coefficients. Integr. Transforms Spec. Funct. 2017, 28, 39–55. [Google Scholar] [CrossRef]
- Simanek, B. An electrostatic interpretation of the zeros of paraorthogonal polynomials on the unit circle. SIAM J. Math. Anal. 2016, 48, 2250–2268. [Google Scholar] [CrossRef] [Green Version]
- Szegő, G. Orthogonal Polynomials, 4th ed.; American Mathematical Society Colloquium Publications Series; American Mathematical Society: Providence, RI, USA, 1975; Volume 23. [Google Scholar]
- Simon, B. Orthogonal Polynomials on the Unit Circle, Part 1: Classical Theory; American Mathematical Society Colloquium Publications Series; American Mathematical Society: Providence, RI, USA, 2005. [Google Scholar]
- Simon, B. Orthogonal Polynomials on the Unit Circle, Part 2: Spectral Theory; American Mathematical Society Colloquium Publications Series; American Mathematical Society: Providence, RI, USA, 2005. [Google Scholar]
- Garza, L.; Hernández, J.; Marcellán, F. Spectral transformations for Hermitian Toeplitz matrices. J. Comput. Appl. Math. 2007, 202, 155–176. [Google Scholar]
- Garza, L.; Hernández, J.; Marcellán, F. Orthogonal polynomials and measures on the unit circle. The Geronimus transformations. J. Comput. Appl. Math. 2010, 233, 1220–1231. [Google Scholar] [CrossRef] [Green Version]
- Marcellán, F. Polinomios ortogonales no estándar. Aplicaciones en análisis numérico y Teoría de Approximación. Rev. Acad. Colomb. Ciencias Exactas Físicas y Naturales 2006, 30, 563–579. [Google Scholar]
- Branquinho, A.; Foulquié, A.; Marcellán, F.; Rebocho, M.N. Coherent Pairs of Linear Functionals on the Unit Circle. J. Approx. Theory 2008, 153, 122–137. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garza, L.G.; Garza, L.E.; Huertas, E.J. On Differential Equations Associated with Perturbations of Orthogonal Polynomials on the Unit Circle. Mathematics 2020, 8, 246. https://doi.org/10.3390/math8020246
Garza LG, Garza LE, Huertas EJ. On Differential Equations Associated with Perturbations of Orthogonal Polynomials on the Unit Circle. Mathematics. 2020; 8(2):246. https://doi.org/10.3390/math8020246
Chicago/Turabian StyleGarza, Lino G., Luis E. Garza, and Edmundo J. Huertas. 2020. "On Differential Equations Associated with Perturbations of Orthogonal Polynomials on the Unit Circle" Mathematics 8, no. 2: 246. https://doi.org/10.3390/math8020246
APA StyleGarza, L. G., Garza, L. E., & Huertas, E. J. (2020). On Differential Equations Associated with Perturbations of Orthogonal Polynomials on the Unit Circle. Mathematics, 8(2), 246. https://doi.org/10.3390/math8020246