Transformations of the Hypergeometric 4F3 with One Unit Shift: A Group Theoretic Study
Abstract
1. Introduction and Preliminaries
2. The Group Structure of the Unit Shift Transformations
3. The Subgroup of Generated by Known Transformations
4. Related Transformation
5. Summation Formulas
6. Proof of Lemma 1
Author Contributions
Funding
Conflicts of Interest
Appendix A
|
|
|
|
|
References
- Andrews, G.E.; Askey, R.; Roy, R. Special Functions; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Krattenthaler, C.; Srinivasa Rao, K. On group theoretical aspects, hypergeometric transformations and symmetries of angular momentum coefficients. In Symmetries in Science XI; Kluwer Acad. Publ.: Dordrecht, The Netherlands, 2005; pp. 355–375. [Google Scholar]
- Rao, K.S. Hypergeometric series and Quantum Theory of Angular Momentum. In Selected Topics in Special Functions; Agarwal, R.P., Manocha, H.L., Srinivasa Rao, K., Eds.; Allied Publishers Ltd.: New Delhi, India, 2001; pp. 93–134. [Google Scholar]
- Rao, K.S.; Doebner, H.D.; Natterman, P. Generalized hypergeometric series and the symmetries of 3 − j and 6 − j coefficients. In Number Theoretic Methods. Developments in Mathematics; Kanemitsu, S., Jia, C., Eds.; Springer: Boston, MA, USA, 2002; Volume 8, pp. 381–403. [Google Scholar]
- Rao, K.S.; Lakshminarayanan, V. Generalized Hypergeometric Functions, Transformations and Group Theoretical Aspects; IOP Science: Bristol, UK, 2018. [Google Scholar]
- Shpot, M.A.; Srivastava, H.M. The Clausenian hypergeometric function 3F2 with unit argument and negative integral parameter differences. Appl. Math. Comput. 2015, 259, 819–827. [Google Scholar]
- Formichella, M.; Green, R.M.; Stade, E. Coxeter group actions on 4F3(1) hypergeometric series. Ramanujan J. 2011, 24, 93–128. [Google Scholar] [CrossRef][Green Version]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Handbook of Mathematical Functions; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Beyer, W.A.; Louck, J.D.; Stein, P.R. Group theoretical basis of some identities for thegeneralized hypergeometric series. J. Math. Phys. 1987, 28, 497–508. [Google Scholar] [CrossRef]
- Hardy, G.H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work; AMS Chelsea Pub.: Providence, RI, USA, 1999; p. 111. [Google Scholar]
- Green, R.M.; Mishev, I.D.; Stade, E. Coxeter group actions and limits of hypergeometric series. Ramanujan J. 2020. [Google Scholar] [CrossRef]
- Mishev, I.D. Coxeter group actions on Saalschützian 4F3(1) series and very-well-poised 7F6(1) series. J. Math. Anal. Appl. 2012, 385, 1119–1133. [Google Scholar] [CrossRef][Green Version]
- Rao, K.S.; Van der Jeugt, J.; Raynal, J.; Jagannathan, R.; Rajeswari, V. Group theoretical basis for the terminating 3F2(1) series. J. Phys. A Math. Gen. 1992, 25, 861–876. [Google Scholar] [CrossRef]
- Van der Jeugt, J.; Rao, K.S. Invariance groups of transformations of basic hypergeometric series. J. Math. Phys. 1999, 40, 6692–6700. [Google Scholar] [CrossRef]
- Nørlund, N.E. Hypergeometric functions. Acta Math. 1955, 94, 289–349. [Google Scholar] [CrossRef]
- Olsson, P.O.M. Analytic continuation of higher-order hypergeometric functions. J. Math. Phys. 1966, 7, 702–710. [Google Scholar] [CrossRef]
- Bühring, W. Generalized hypergeometric functions at unit argument. Proc. Am. Math. Soc. 1992, 114, 145–153. [Google Scholar] [CrossRef][Green Version]
- Kim, Y.S.; Rathie, A.K.; Paris, R.B. On two Thomae-type transformations for hypergeometric series with integral parameter differences. Math. Commun. 2014, 19, 111–118. [Google Scholar]
- Karp, D.B.; Prilepkina, E.G. Beyond the beta integral method: transformation formulas for hypergeometric functions via Meijer’s G function. arXiv 2019, arXiv:1912.11266. [Google Scholar]
- Ebisu, A.; Iwasaki, K. Three-term relations for 3F2(1). J. Math. Anal. Appl. 2018, 463, 593–610. [Google Scholar] [CrossRef]
- Bailey, W.N. Generalized Hypergeometric Series; Stecherthafner Service Agency: New York, NY, USA; London, UK, 1964; Reprinted from: Cambridge Tracts in Mathematics and Mathematical Physics, 1935, Volume 32. [Google Scholar]
- Karp, D.B.; Prilepkina, E.G. Degenerate Miller-Paris transformations. Results Math. 2019, 74. [Google Scholar] [CrossRef]
- Çetinkaya, A.; Karp, D. Summation formulas for some hypergeometric and some digamma series. Commun. Korean Math. Soc. 2020. in preparation. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karp, D.; Prilepkina, E. Transformations of the Hypergeometric 4F3 with One Unit Shift: A Group Theoretic Study. Mathematics 2020, 8, 1966. https://doi.org/10.3390/math8111966
Karp D, Prilepkina E. Transformations of the Hypergeometric 4F3 with One Unit Shift: A Group Theoretic Study. Mathematics. 2020; 8(11):1966. https://doi.org/10.3390/math8111966
Chicago/Turabian StyleKarp, Dmitrii, and Elena Prilepkina. 2020. "Transformations of the Hypergeometric 4F3 with One Unit Shift: A Group Theoretic Study" Mathematics 8, no. 11: 1966. https://doi.org/10.3390/math8111966
APA StyleKarp, D., & Prilepkina, E. (2020). Transformations of the Hypergeometric 4F3 with One Unit Shift: A Group Theoretic Study. Mathematics, 8(11), 1966. https://doi.org/10.3390/math8111966