Sufficient Criteria for the Absence of Global Solutions for an Inhomogeneous System of Fractional Differential Equations
Abstract
:1. Introduction
- (A1)
- and .
- (A2)
- , , .
2. Proof of the Main Result
Author Contributions
Funding
Conflicts of Interest
References
- Arias, S.I.R.; Munoz, D.R.; Moreno, J.S.; Cardoso, S.; Ferreira, R.; Freitas, P.J. Fractional modeling of the AC large-signal frequency response in magnetoresistive current sensors. Sensors 2013, 13, 17516–17533. [Google Scholar] [CrossRef] [PubMed]
- Barkai, E.; Metzler, R.; Klafter, J. From continuous time random walks to the fractional Fokker-Planck equation. Phys. Rev. E 2000, 61, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Chaves, A. Fractional diffusion equation to describe Levy flights. Phys. Lett. A 1998, 239, 13–16. [Google Scholar] [CrossRef]
- Drapaca, C.S.; Sivaloganathan, S. A fractional model of continuum mechanics. J. Elast 2012, 107, 105–123. [Google Scholar] [CrossRef]
- Gorenflo, R.; Mainardi, F.; Scalas, E.; Raberto, M. Fractional calculus and continuous-time finance III: The diffusion limit. In Mathematical Finance (Konstanz, 2000); Birkhäuser: Basel, Switzerland, 2001; pp. 171–180. [Google Scholar]
- Sapora, A.; Cornetti, P.; Carpinteri, A. Wave propagation in nonlocal elastic continua modelled by a fractional calculus approach. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 63–74. [Google Scholar] [CrossRef]
- Tarasov, V.E. Review of some promising fractional physical models. Int. J. Mod. Phys. B 2013, 27, 1330005. [Google Scholar] [CrossRef] [Green Version]
- Lakshmikantham, V.; Vatsala, A.S. Basic theory of fractional differential equations. Nonlinear Anal. 2008, 69, 2677–2682. [Google Scholar] [CrossRef]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Yverdon-les-Bains, Switzerland, 1993. [Google Scholar]
- Shuqin, Z. Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives. Nonlinear Anal. 2009, 71, 2087–2093. [Google Scholar]
- Al-Refai, M.; Luchko, Y. Maximum principles for the fractional diffusion equations with the Riemann-Liouville fractional derivative and their applications. Fract. Calc. Appl. Anal. 2014, 17, 483–498. [Google Scholar] [CrossRef]
- Luchko, Y. Maximum principle for the generalized time-fractional diffusion equation. J. Math. Anal. Appl. 2009, 351, 218–223. [Google Scholar] [CrossRef] [Green Version]
- Kirane, M.; Kadem, A.; Debbouche, A. Blowing-up solutions to two-times fractional differential equations. Math. Nachr. 2013, 286, 1797–1804. [Google Scholar] [CrossRef]
- Kirane, M.; Malik, S.A. The profile of blowing-up solutions to a nonlinear system of fractional differential equations. Nonlinear Anal. 2010, 73, 3723–3736. [Google Scholar] [CrossRef] [Green Version]
- Donatelli, M.; Mazza, M.; Serra-Capizzano, S. Spectral analysis and structure preserving preconditioners for fractional diffusion equation. J. Comput. Phys. 2016, 307, 262–279. [Google Scholar] [CrossRef]
- Bu, W.; Liu, X.; Tang, Y.; Yang, J. Finite element multigrid method for multi-term time fractional advection diffusion equations. Int. J. Mod. Sim. Sci. Comp. 2015, 6, 1540001. [Google Scholar] [CrossRef]
- Lin, X.-L.; Ng, M.K.; Sun, H.-W. A multigrid method for linear systems arising from time-dependent two-dimensional space-fractional diffusion equations. J. Comput. Phys. 2017, 336, 69–86. [Google Scholar] [CrossRef]
- Meerschaert, M.M.; Tadjeran, C. Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 2006, 56, 80–90. [Google Scholar] [CrossRef]
- Parvizi, M.; Eslahchi, M.R.; Dehghan, M. Numerical solution of fractional advection-diffusion equation with a nonlinear source term. Numer. Algorithms 2015, 68, 601–629. [Google Scholar] [CrossRef]
- Furati, K.M.; Kirane, M. Necessary conditions for the existence of global solutions to systems of fractional differential equations. Fract. Calc. Appl. Anal. 2008, 11, 281–298. [Google Scholar]
- Bai, Z.; Chen, Y.; Lian, H.; Sun, S. On the existence of blow up solutions for a class of fractional differential equations. Fract. Calc. Appl. Anal. 2014, 17, 1175–1187. [Google Scholar] [CrossRef]
- Henderson, J.; Luca, R. Nonexistence of positive solutions for a system of coupled fractional boundary value problems. Bound. Value Probl. 2015, 2015, 138. [Google Scholar] [CrossRef] [Green Version]
- Kassim, M.D.; Furati, K.M.; Tatar, N.E. Non-existence for fractionally damped fractional differential problems. Acta Math. Sci. 2017, 37, 119–130. [Google Scholar] [CrossRef] [Green Version]
- Mennouni, A.; Youkana, A. Finite time blow-up of solutions for a nonlinear system of fractional differential equations. Electron. J. Differ. Equ. 2017, 152, 1–15. [Google Scholar]
- Samet, B. Nonexistence of global solutions for a class of sequential fractional differential inequalities. Eur. Phys. J. Spec. Top. 2018, 226, 3513–3524. [Google Scholar] [CrossRef]
- Mitidieri, E.; Pohozaev, S.I. Nonexistence of weak solutions for some degenerate and singular hyperbolic problems on ℝN. Proc. Steklov Inst. Math. 2001, 232, 240–259. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jleli, M.; Samet, B. Sufficient Criteria for the Absence of Global Solutions for an Inhomogeneous System of Fractional Differential Equations. Mathematics 2020, 8, 9. https://doi.org/10.3390/math8010009
Jleli M, Samet B. Sufficient Criteria for the Absence of Global Solutions for an Inhomogeneous System of Fractional Differential Equations. Mathematics. 2020; 8(1):9. https://doi.org/10.3390/math8010009
Chicago/Turabian StyleJleli, Mohamed, and Bessem Samet. 2020. "Sufficient Criteria for the Absence of Global Solutions for an Inhomogeneous System of Fractional Differential Equations" Mathematics 8, no. 1: 9. https://doi.org/10.3390/math8010009
APA StyleJleli, M., & Samet, B. (2020). Sufficient Criteria for the Absence of Global Solutions for an Inhomogeneous System of Fractional Differential Equations. Mathematics, 8(1), 9. https://doi.org/10.3390/math8010009