Satisfying Bank Capital Requirements: A Robustness Approach in a Modified Roy Safety-First Framework
Abstract
:1. Introduction
2. Literature Review: Optimization under Uncertainty
3. Problem Definition and Assumption: Chance Constraint with an Unknown Distribution
Notation and Parameter Description
4. Model Formulation and Approach
4.1. Formulation
4.2. CreditMetrics Approach
Migration of Ratings
4.3. Loan Valuation and Credit Risk
5. Model Development
Transformation and Solution to the Multi-objective Model
6. Numerical Examples
6.1. Data
6.1.1. Objective Function
6.1.2. CRAR Constraint
6.1.3. Constraint Based on Other Factors
6.2. Results and Remarks
Additional Remarks
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bernanke, B.S. Four Questions about the Financial Crisis. Available online: https://www.federalreserve.gov/newsevents/speech/bernanke20090414a.htm (accessed on 29 June 2019).
- Fund, I.M. World Economic Outlook: Uneven Growth—Short and Long-Term Factors. 2015. Available online: https://www.imf.org/external/pubs/ft/weo/2015/01/ (accessed on 29 April 2019).
- Hasan, I.; Siddique, A.; Sun, X. Monitoring the “invisible” hand of market discipline: Capital adequacy revisited. J. Bank Financ. 2015, 50, 475–492. [Google Scholar] [CrossRef]
- Atta Mills, E.F.E.A.; Yu, B.; Gu, L. On meeting capital requirements with a chance-constrained optimization model. SpringerPlus 2016, 5, 500. [Google Scholar] [CrossRef] [PubMed]
- Delage, E.; Ye, Y. Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 2010, 58, 595–612. [Google Scholar] [CrossRef]
- Scarf, H.; Arrow, K.; Karlin, S. A min-max solution of an inventory problem. In Studies in the Mathematical Theory of Inventory and Production; Stanford University Press: Redwood City, CA, USA, 1958; pp. 201–209. [Google Scholar]
- Calafiore, G.C.; El Ghaoui, L. On distributionally robust chance-constrained linear programs. J. Optim. Theory Appl. 2006, 130, 1–22. [Google Scholar] [CrossRef]
- Wiesemann, W.; Kuhn, D.; Sim, M. Distributionally robust convex optimization. Oper. Res. 2014, 62, 1358–1376. [Google Scholar] [CrossRef]
- Atta Mills, E.F.E.A.; Yan, D.; Yu, B.; Wei, X. Research on regularized mean-variance portfolio selection strategy with modified Roy safety-first principle. SpringerPlus 2016, 5, 919. [Google Scholar] [CrossRef] [PubMed]
- Dantzig, G. Linear Programming and Extensions; Princeton University Press: Princeton, NJ, USA, 2016; Available online: https://science.sciencemag.org/content/146/3651/1572 (accessed on 1 June 2019).
- Kuhn, H.W.; Tucker, A.W. Nonlinear programming. In Traces and Emergence of Nonlinear Programming; Kjeldsen, T., Ed.; Birkhäuser: Basel, Switzerland, 2014; pp. 247–258. [Google Scholar]
- Parreño-Torres, C.; Alvarez-Valdes, R.; Ruiz, R. Integer programming models for the pre-marshalling problem. Eur. J. Oper. Res. 2019, 274, 142–154. [Google Scholar] [CrossRef]
- Saltelli, A.; Aleksankina, K.; Becker, W.; Fennell, P.; Ferretti, F.; Holst, N.; Li, S.; Wu, Q. Why so many published sensitivity analyses are false: A systematic review of sensitivity analysis practices. Environ. Model. Softw. 2019, 114, 29–39. [Google Scholar] [CrossRef]
- Bertsimas, D.; Gupta, V.; Kallus, N. Data-driven robust optimization. Math. Program. 2018, 167, 235–292. [Google Scholar] [CrossRef]
- Tan, X.; Gong, Z.; Chiclana, F.; Zhang, N. Consensus modeling with cost chance constraint under uncertainty opinions. Appl. Soft Comput. 2018, 67, 721–727. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W. Chance-constrained programming. Manag. Sci. 1959, 6, 73–79. [Google Scholar] [CrossRef]
- Pagnoncelli, B.; Ahmed, S.; Shapiro, A. Sample average approximation method for chance constrained programming: theory and applications. J. Optim. Theory Appl. 2009, 142, 399–416. [Google Scholar] [CrossRef]
- Kim, J.; Do Chung, B.; Kang, Y.; Jeong, B. Robust optimization model for closed-loop supply chain planning under reverse logistics flow and demand uncertainty. J. Clean. Prod. 2018, 196, 1314–1328. [Google Scholar] [CrossRef]
- Lotfi, S.; Zenios, S.A. Robust VaR and CVaR optimization under joint ambiguity in distributions, means, and covariances. Eur. J. Oper. Res. 2018, 269, 556–576. [Google Scholar] [CrossRef]
- Goh, J.; Sim, M. Distributionally robust optimization and its tractable approximations. Oper. Res. 2010, 58, 902–917. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, J.; Ye, Y. Newsvendor optimization with limited distribution information. Optim. Methods Softw. 2013, 28, 640–667. [Google Scholar] [CrossRef] [Green Version]
- Cheung, S.S.; Man-Cho So, A.; Wang, K. Linear matrix inequalities with stochastically dependent perturbations and applications to chance-constrained semidefinite optimization. SIAM J. Optim. 2012, 22, 1394–1430. [Google Scholar] [CrossRef]
- Zymler, S.; Kuhn, D.; Rustem, B. Distributionally robust joint chance constraints with second-order moment information. Math. Program. 2013, 137, 167–198. [Google Scholar] [CrossRef]
- Marshall, A.W.; Olkin, I. A one-sided inequality of the Chebyshev type. Ann. Math. Stat. 1960, 31, 488–491. [Google Scholar] [CrossRef]
- Godwin, H. On generalizations of Tchebychef’s inequality. J. Am. Stat. Assoc. 1955, 50, 923–945. [Google Scholar] [CrossRef]
- Mora, N. What determines creditor recovery rates? Econ. Rev. 2012, 97, 79–109. Available online: https://econpapers.repec.org/article/fipfedker/y_3a2012_3ai_3aqii_3an_3av.97no.2_3ax_3a2.htm (accessed on 29 June 2019).
- Khieu, H.D.; Mullineaux, D.J.; Yi, H.C. The determinants of bank loan recovery rates. J. Bank Financ. 2012, 36, 923–933. [Google Scholar] [CrossRef]
- Acharya, V.V.; Bharath, S.T.; Srinivasan, A. Does industry-wide distress affect defaulted firms? Evidence from creditor recoveries. J. Financ. Econ. 2007, 85, 787–821. [Google Scholar] [CrossRef]
- Emery, K.; Cantor, R.; Arner, R. Recovery Rates on North American Syndicated Bank Loans, 1989–2003. Available online: https://www.moodys.com/sites/products/DefaultResearch/2006600000428092.pdf (accessed on 30 April 2019).
- Asarnow, E.; Edwards, D. Measuring loss on defaulted bank loans: A 24-year study. J. Com. Lend. 1995, 77, 11–23. [Google Scholar]
- Gupton, G.M.; Finger, C.C.; Bhatia, M. CreditMetrics: Technical Document; JP Morgan: New York, NY, USA, 1997; Available online: http://homepages.rpi.edu/~guptaa/MGMT4370.09/Data/CreditMetricsIntro.pdf (accessed on 29 June 2019).
- Morgan, J. Creditmetrics-Technical Document; JP Morgan: New York, NY, USA, 1997; Available online: https://www.msci.com/documents/10199/93396227-d449-4229-9143-24a94dab122f (accessed on 28 April 2019).
- Rockafellar, R.T.; Uryasev, S. Optimization of conditional value-at-risk. J. Risk 2000, 2, 21–42. [Google Scholar] [CrossRef]
- Sarkar, B. Mathematical and analytical approach for the management of defective items in a multi-stage production system. J. Clean. Prod. 2019, 218, 896–919. [Google Scholar] [CrossRef]
Rating | AAA | AA | A | BBB | BB | B | C | D |
---|---|---|---|---|---|---|---|---|
AAA | 98.23 | 1.54 | 0.23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
AA | 17.04 | 78.52 | 3.70 | 0.74 | 0.00 | 0.00 | 0.00 | 0.00 |
A | 9.59 | 15.07 | 71.23 | 4.11 | 0.00 | 0.00 | 0.00 | 0.00 |
BBB | 4.02 | 3.29 | 15.69 | 76.28 | 0.00 | 0.37 | 0.37 | 0.00 |
BB | 11.11 | 22.22 | 22.22 | 22.22 | 22.22 | 0.00 | 0.00 | 0.00 |
B | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 50.00 | 0.00 | 50.00 |
C | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 100 |
Category | Year 1 | Year 2 | Year 3 | Year 4 |
---|---|---|---|---|
AAA | 3.60 | 4.17 | 4.73 | 5.12 |
AA | 3.65 | 4.22 | 4.78 | 5.17 |
A | 3.72 | 4.32 | 4.93 | 5.32 |
BBB | 4.10 | 4.67 | 5.25 | 5.63 |
BB | 5.55 | 6.02 | 6.78 | 7.27 |
B | 6.05 | 7.02 | 8.03 | 8.52 |
CCC/C | 15.05 | 15.02 | 14.03 | 13.52 |
Assets | Collateral | IR | RR | RW | Mean | Variance | CV | CCV | Allocation |
---|---|---|---|---|---|---|---|---|---|
3-Year AAA Commercial and Industrial Loan | Inventory or account receivables | 3.56 | 80.00 | 20 | 1.0243 | 4.1679 × | 0.2402 | 0.2829 | 0.2550 |
5-Year AA Agriculture and Farm Loan | Equipment, crops, livestock, etc. | 4.17 | 80.00 | 50 | 1.0081 | 1.7196 × | 0.2558 | 0.2889 | 0.1663 |
2-Year BBBPersonal Loan | Savings account, tangible property, etc. | 3.11 | 80.00 | 75 | 1.0213 | 4.2935 × | 0.2323 | 0.2140 | 0.2665 |
3-Year B Small Business Loan | Land, savings account, etc | 4.03 | 80.00 | 75 | 0.81911 | 4.0625 × | 0.0258 | 0.0689 | 0.0468 |
4-Year A Auto Loan | Savings account or car itself | 4.21 | 80.00 | 75 | 1.0248 | 4.7805 × | 0.2512 | 0.2892 | 0.2386 |
1-Year Treasury Bill | Not Applicable | 0.1 | 100 | 0 | 1.001 | 0 | 0 | 0 | 0.0268 |
Fixed Assets | Not Applicable | 0 | 100 | 0 | 1 | 0 | 0 | 0 | - |
Non-Interest Earning Assets | Not Applicable | 0 | 100 | 0 | 1 | 0 | 0 | 0 | - |
Risky Assets | |||||
---|---|---|---|---|---|
1 | 0.85 | 0. 8 | 0.8 | 0.8 | |
0.85 | 1 | 0.9 | 0.85 | 0.8 | |
0.8 | 0.9 | 1 | 0.9 | 0.8 | |
0.8 | 0.85 | 0.9 | 1 | 0.95 | |
0.8 | 0.8 | 0.8 | 0.95 | 1 |
Loan Type | Worst-Credit Migration Path | Value |
---|---|---|
3-Year AAA Commercial and Industrial Loan | 0.6712 | |
5-Year AA Agriculture and Farm Loan | 0.6193 | |
2-Year BBB Personal Loan | 0.7264 | |
3-Year B Small Business Loan | 0.6800 | |
4-Year A Auto Loan | 0.6501 |
Distributionally Robust | Non-distributionally Robust | |
---|---|---|
CRAR | ||
Worst-case CRAR | ||
Credit risk (variance) | 0.0203 | |
Interest rate return | 0.0546 | |
Portfolio value return | 0.7661 | 0.8559 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atta Mills, E.F.E.; Yu, B.; Zeng, K. Satisfying Bank Capital Requirements: A Robustness Approach in a Modified Roy Safety-First Framework. Mathematics 2019, 7, 593. https://doi.org/10.3390/math7070593
Atta Mills EFE, Yu B, Zeng K. Satisfying Bank Capital Requirements: A Robustness Approach in a Modified Roy Safety-First Framework. Mathematics. 2019; 7(7):593. https://doi.org/10.3390/math7070593
Chicago/Turabian StyleAtta Mills, Ebenezer Fiifi Emire, Bo Yu, and Kailin Zeng. 2019. "Satisfying Bank Capital Requirements: A Robustness Approach in a Modified Roy Safety-First Framework" Mathematics 7, no. 7: 593. https://doi.org/10.3390/math7070593
APA StyleAtta Mills, E. F. E., Yu, B., & Zeng, K. (2019). Satisfying Bank Capital Requirements: A Robustness Approach in a Modified Roy Safety-First Framework. Mathematics, 7(7), 593. https://doi.org/10.3390/math7070593