An Iterative Algorithm for the Nonlinear MC2 Model with Variational Inequality Method
Abstract
1. Introduction
2. Preliminaries
3. Main Results
4. Application and Comparison
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Murat, T.A.; Alper, B. Robustness analysis of multi-criteria collaborative filtering algorithms against shilling attacks. Expert Syst. Appl. 2018, 115, 386–402. [Google Scholar]
- Diemuodeke, E.O.; Addo, A.; Oko, C.O.; Mulugetta, Y.; Ojapah, M.M. Optimal mapping of hybrid renewable energy systems for locations using multi-criteria decision-making algorithm. Renew. Energy 2019, 134, 461–477. [Google Scholar] [CrossRef]
- Garg, H.; Nancy. Non-linear programming method for multi-criteria decision making problems under interval neutrosophic set environment. Appl. Intell. 2017, 48, 2199–2213. [Google Scholar] [CrossRef]
- Suzdaltsev, I.V.; Chermoshentsev, S.F.; Bogula, N.Y. Bionic algorithms for multi-criteria design of electronic equipment printed circuit board. IEEE Int. Conf. SCM 2017, 394–396. [Google Scholar] [CrossRef]
- Yong, S. MC2 Linear Programming. In Multiple Criteria Multiple Constraint-Level, Linear Programming: Concepts, Techniques and Applications; World Scientific Publishing Co Pte Ltd.: Singapore, 2001; pp. 68–91. [Google Scholar]
- Seiford, L.; Yu, P.L. Potential solutions of linear systems: The multi-criteria multiple constraint levels program. J. Math. Anal. Appl. 1979, 6, 283–303. [Google Scholar] [CrossRef]
- Shi, Y. A Transportation Model with Multiple Criteria and Multiple Constraint Levels. Math. Comput. Model. 1995, 21, 13–28. [Google Scholar] [CrossRef]
- Shi, Y.; Wise, M.; Luo, M.; Lin, Y. Data mining in Credit Card Portfolio management: A multiple criteria decision making approach. In Multiple Criteria Decision Making in the New Millennium; Köksalan, M., Zionts, S., Eds.; Springer: Berlin, Germany, 2001; pp. 420–436. [Google Scholar]
- Li, G.Y.; Tang, X.M.; Zhang, C.Y.; Gao, X. Multi-criteria constraint algorithm for selecting ICESat/GLAS data as elevation control points. J. Remote Sens. 2017, 21, 96–104. [Google Scholar]
- Kwak, W.; Shi, Y.; Eldridge, S.W.; Kou, G. Bankruptcy prediction for Japanese firms: using Multiple Criteria Linear Programming data mining approach. Adv. Inv. Anal. Portf. Manag. 2006, 1, 27–49. [Google Scholar] [CrossRef]
- Zhang, J.L.; Shi, Y.; Zhang, P. Several Multi-criteria Programming Methods for Classification. Comput. Oper. Res. 2009, 36, 823–836. [Google Scholar] [CrossRef]
- Bellare, M.; Namprempre, C.; Neven, G. Lecture Notes in Computer Science. J. Cryptol. 2004, 22, 1–61. [Google Scholar] [CrossRef]
- Costa Batista, A.; Batista, L.S. Demand Side Management Using a Multi-Criteria ϵ-Constraint based Exact Approach. Expert Syst. Appl. 2018, 99, 180–192. [Google Scholar] [CrossRef]
- Kou, G.; Peng, Y.; Zhang, C.; Shi, Y. Multiple Criteria Mathematical Programming for Multi-class Classification and Application in Network Intrusion Detection. Inf. Sci. 2009, 179, 371–381. [Google Scholar] [CrossRef]
- Meghwani, S.S.; Thakur, M. Multi-criteria algorithms for portfolio optimization under practical constraints. Swarm Evol. Comput. 2017, 37, 104–125. [Google Scholar] [CrossRef]
- Shi, Y.; He, J.; Wang, L.; Fan, W. Computer-based algorithms for multiple criteria and multiple constraint level integer linear programming. Comput. Math. Appl. 2005, 49, 903–921. [Google Scholar] [CrossRef]
- Chen, D.; Zhong, Y.; Liao, Y.; Li, L. Review of Multiple Criteria and Multiple Constraint-level Linear Programming. Procedia Comput. Sci. 2013, 17, 158–165. [Google Scholar] [CrossRef][Green Version]
- Wang, B.; Wang, Y. A Multiple-Criteria and Multiple-Constraint Levels Linear Programming Based Error Correction Classification Model. Procedia Comput. Sci. 2013, 17, 1073–1082. [Google Scholar] [CrossRef][Green Version]
- Gono̧calves, M.L.N.; Melo, J.G. Augmented Lagrangian methods for nonlinear programming with possible infeasibility. J. Glob. Optim. 2015, 63, 297–318. [Google Scholar]
- Philip, E.G.; Elizabeth, W. Sequential Quadratic Programming Methods. In Mixed Integer Nonlinear Programming; Jon, L., Sven, L., Eds.; Springer: New York, NY, USA, 2012; pp. 147–225. [Google Scholar]
- Craig, T.L.; André, L.T. Nonlinear equality constraints in feasible sequential quadratic programming. Optim. Methods Softw. 2007, 6, 262–285. [Google Scholar]
- Lasdon, L.S.; Fox, R.L.; Ratner, M.W. Nonlinear optimization using the generalized reduced gradient method. Revue Française D’Automatique Informatique Recherche Opé-Rationnelle Recherche Opérationnelle 1974, 8, 73–103. [Google Scholar] [CrossRef]
- Toyasaki, F.; Daniele, P.; Wakolbinger, T. A variational inequality formulation of equilibrium models for end-of-life products with nonlinear constraints. Eur. J. Oper. Res. 2014, 236, 340–350. [Google Scholar] [CrossRef]
- Tang, Y.K.; Chang, S.S.; Salahuddin, S. A system of nonlinear set valued variational inclusions. SpringerPlus 2014, 3, 1–10. [Google Scholar] [CrossRef]
- Gowda, M.S.; Sossa, D. Weakly homogeneous variational inequalities and solvability of nonlinear equations over cones. Math. Program. 2018, 1–23. [Google Scholar] [CrossRef]
- He, B.S. A class of projection and contraction methods for monotone variational inequalities. Appl. Math. Optim. 1997, 35, 69–76. [Google Scholar] [CrossRef]
- Huang, N.J.; Fang, Y.P. A New Iterative Algorithm for a Class of Nonlinear Mixed Implicit Variational Inequalities. Appl. Math. Lett. 2003, 16, 507–511. [Google Scholar] [CrossRef]
- Dontchev, A.L.; Rockafellar, R.T. Solution Mappings for Variational Problems; Set-Valued Analysis of Solution Mappings. In Implicit Functions and Solution Mappings; Thomas, V.M., Sidney, I.R., Eds.; Springer: New York, NY, USA, 2009; pp. 69–212. [Google Scholar]
- Webb, J.R.L. Operateurs Maximaux Monotones et Semi-groups de Contractions dans les Espaces de Hilbert. B Lond. Math. Soc. 1974, 6, 221–222. [Google Scholar] [CrossRef]
- Zhong, Y.H.; Zhao, L.; Zhang, G.L. The oilfield measure structure optimization model of the multi criteria and multi constraint levels and its application. J. Oil. Gas Technol. 2008, 30, 124–128. [Google Scholar]
Parameter | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 |
---|---|---|---|---|---|---|---|
oil production/ t (fracturing) | 6.348 | 7.211 | 3.203 | 2.186 | 3.012 | 4.386 | 8.711 |
number of wells (fracturing) | 55 | 60 | 44 | 41 | 33 | 53 | 91 |
cost/ yuan (fracturing) | 3366 | 4671 | 2144 | 1472 | 1968 | 3038 | 5364 |
oil production/ t (acidification) | 3.65 | 2.26 | 4.59 | 4.24 | 4.02 | 4.08 | 5.34 |
number of wells (acidification) | 54 | 61 | 83 | 74 | 61 | 72 | 85 |
cost/ yuan (acidification) | 2847 | 1599 | 3374 | 3282 | 3039 | 3224 | 4013 |
oil production/ t (fill holes) | 69.58 | 71.06 | 86.82 | 72.03 | 71.05 | 67.87 | 53.65 |
number of wells (fill holes) | 883 | 893 | 961 | 812 | 811 | 920 | 735 |
cost/ yuan (fill holes) | 15,277 | 15,352 | 18,647 | 15,644 | 18,311 | 11,128 | 10,977 |
oil production/ t (turn extraction) | 4.23 | 4.12 | 3.83 | 2.47 | 2.03 | 2.57 | 2.39 |
number of wells (turn extraction) | 56 | 46 | 54 | 47 | 44 | 47 | 42 |
cost/ yuan (turn extraction) | 2965 | 3050 | 2886 | 1522 | 1192 | 1720 | 1623 |
oil production/ t (large pumps) | 5.73 | 9.83 | 8.69 | 5.42 | 8.00 | 5.98 | 5.80 |
number of wells (larg pumps) | 120 | 147 | 144 | 116 | 129 | 114 | 87 |
cost/ yuan (large pumps) | 4975 | 5222 | 4582 | 2852 | 5209 | 3304 | 3145 |
oil production/ t (water plugging) | 11.02 | 10.52 | 11.03 | 11.48 | 11.00 | 10.51 | 17.11 |
number of wells (water plugging) | 262 | 253 | 255 | 243 | 239 | 216 | 303 |
cost/ yuan (water plugging) | 6958 | 6717 | 7046 | 7394 | 7182 | 5904 | 8760 |
oil production/ t (overhaul) | 4.97 | 5.63 | 5.58 | 2.08 | 3.00 | 2.27 | 1.73 |
number of wells (overhaul) | 65 | 73 | 69 | 32 | 44 | 40 | 35 |
cost/ yuan (overhaul) | 3826 | 4036 | 3666 | 1325 | 2233 | 1454 | 1183 |
oil production/ t (other measures) | 8.85 | 10.13 | 6.23 | 5.73 | 4.00 | 8.29 | 7.24 |
number of wells (other measures) | 176 | 184 | 132 | 119 | 107 | 187 | 146 |
cost/ yuan (other measures) | 7215 | 7559 | 4402 | 4658 | 2515 | 5877 | 5632 |
2119.74 | 2003.78 | 2546.59 | 2081.86 | 2160.20 | 2148.73 | 2067.41 | 2017.49 |
640.3 | 756.2 | 213.4 | 678.1 | 599.8 | 611.3 | 692.6 | 742.5 |
90 | 140 | 35,000 | 49,000 | 1450 | 1760 |
Measure | Fracturing | Acidification | Fill Holes | Turn Extraction | Larg Pumps |
---|---|---|---|---|---|
Production | 5.9625 | 0.4221 | 81.4449 | 2.3421 | 5.4038 |
Measure | Card Water Plugging | Overhaul | Other Measures | Total | |
Production | 13.8675 | 2.8115 | 6.1651 | 118.4195 |
Comparison Factors | Algorithm 1 | -Simplex Method | -Interior Point Method |
---|---|---|---|
Number of iterations | 2 | 2 | 6 |
Computation complexity (s) | 0.003291 | 0.002884 | 0.010653 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, C.; Fan, F.; Yang, Z.; Li, X. An Iterative Algorithm for the Nonlinear MC2 Model with Variational Inequality Method. Mathematics 2019, 7, 514. https://doi.org/10.3390/math7060514
Min C, Fan F, Yang Z, Li X. An Iterative Algorithm for the Nonlinear MC2 Model with Variational Inequality Method. Mathematics. 2019; 7(6):514. https://doi.org/10.3390/math7060514
Chicago/Turabian StyleMin, Chao, Feifei Fan, Zhaozhong Yang, and Xiaogang Li. 2019. "An Iterative Algorithm for the Nonlinear MC2 Model with Variational Inequality Method" Mathematics 7, no. 6: 514. https://doi.org/10.3390/math7060514
APA StyleMin, C., Fan, F., Yang, Z., & Li, X. (2019). An Iterative Algorithm for the Nonlinear MC2 Model with Variational Inequality Method. Mathematics, 7(6), 514. https://doi.org/10.3390/math7060514