Dominant Cubic Coefficients of the ‘1/3-Rule’ Reduce Contest Domains
Abstract
:1. Introduction
2. Third-Order Extension of ‘1/3-Rule’ Calibrates Selection
2.1. Description of Cubic Coefficients Extending the ‘1/3-Rule’
2.2. Dominant Cubic Coefficients of Singleton Fixation Probability Maclaurin Series
2.3. Part 1 of Dominant Terms in
2.3.1. Dominant Single Cubic Coefficients
2.3.2. Dominant Paired Cubic Coefficients (i)
2.3.3. Dominant Paired Cubic Coefficients (ii)
2.3.4. Dominant Triple Cubic Coefficients
2.4. Part 2 of Dominant Terms in
2.5. Part 3 of Dominant Terms in
2.6. Simplification of Third-Order Maclaurin Series
3. Corollaries of Theorem 1
3.1. Non-Harmful Contests
3.2. Harmful Contests
4. Quantify Maclaurin Series of Second- and Third-Order Terms
4.1. Non-Harmful Contests When
4.2. Harmful Contests, Examples (i) and (ii)
5. Discussion
Funding
Acknowledgments
Conflicts of Interest
References
- McVean, G. Diffusion theory. In Encyclopedia of Life Sciences; John Wiley & Sons, Ltd.: Chichester, UK, 2006. [Google Scholar] [CrossRef]
- Otto, S.P.; Whitlock, M.C. Fixation probabilities and times. In Encyclopedia of Life Sciences; John Wiley & Sons, Ltd.: Chichester, UK, 2013. [Google Scholar] [CrossRef]
- Zheng, X.D.; Cressman, R.; Tao, Y. The diffusion approximation of stochastic evolutionary game dynamics: Mean effective fixation time and the significance of the one third law. Dyn. Games Appl. 2011, 1, 462–477. [Google Scholar] [CrossRef]
- Cressman, R.; Apaloo, J. Evolutionary game theory. In Handbook of Dynamic Game Theory, 1st ed.; Başar, T., Zaccour, G., Eds.; Springer International Publishing AG: London, UK, 2018; ISBN 978-3-319-44373-7. [Google Scholar]
- Liu, X.; He, M.; Kang, Y.; Pan, Q. Fixation of strategies with the Moran and Fermi processes in evolutionary games. Physica A 2017, 484, 336–344. [Google Scholar] [CrossRef]
- Slade, P.F. On risk-dominance and the ‘1/3-rule’ in 2 × 2 evolutionary games. Int. J. Pure Appl. Math. 2017, 113, 649–664. [Google Scholar] [CrossRef]
- Wang, X.-J.; Gu, C.-L.; Quan, J. Evolutionary game dynamics of the Wright-Fisher process with different selection intensities. J. Theor. Biol. 2019, 465, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Slade, P.F. Linearization of the Kingman coalescent. Mathematics 2018, 6, 82. [Google Scholar] [CrossRef]
- Wakeley, J. Coalescent Theory: An Introduction, 1st ed.; Roberts and Company Publishers: Greenwood Village, CO, USA, 2009; ISBN 978-0-974-70775-4. [Google Scholar]
- Van Cleve, J. Social evolution and genetic interactions in the short and long term. Theor. Popul. Biol. 2015, 103, 2–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slade, P.F. Cubic risk-dominance increases recessive co-operator exploitation. Int. J. Math. Arch. 2019, 10, 12–18, e-ISSN 2229-5046. [Google Scholar]
- Broom, M.; Rychtář, J. Game-Theoretical Models in Biology, 1st ed.; Chapman and Hall/CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Moran, P.A.P. Random processes in genetics. Proc. Camb. Philos. Soc. 1958, 54, 60–71. [Google Scholar] [CrossRef]
- Moran, P.A.P. The effect of selection in a haploid genetic population. Proc. Camb. Philos. Soc. 1958, 54, 463–467. [Google Scholar] [CrossRef]
- Moran, P.A.P. Statistical Processes of Evolutionary Theory, 1st ed.; Clarendon Press: Oxford, UK, 1962. [Google Scholar]
- Nowak, M.A.; Sasaki, A.; Taylor, C.; Fudenberg, D. Emergence of cooperation and evolutionary stability in finite populations. Nature 2004, 428, 646–650. [Google Scholar] [CrossRef] [PubMed]
- Traulsen, A.; Hauert, C. Stochastic evolutionary game dynamics. In Reviews of Nonlinear Dynamics and Complexity, 2nd ed.; Schuster, G.A., Ed.; Wiley-VCH: Weinheim, Germany, 2009; pp. 25–61. [Google Scholar] [CrossRef]
- Bomze, I.; Pawlowitsch, C. One-third rules with equality: Second-order evolutionary stability conditions in finite populations. J. Theor. Biol. 2008, 254, 616–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, B.; Altrock, P.M.; Wang, L.; Traulsen, A. Universality of weak selection. Phys. Rev. E 2010, 82, 046106. [Google Scholar] [CrossRef]
- Kurokawa, S.; Wakano, J.Y.; Ihara, Y. Evolution of group-wise cooperation: Generosity, paradoxical behavior and non-linear payoff functions. Games 2018, 9, 100. [Google Scholar] [CrossRef]
- Chalub, F.A.A.C.; Souza, M.O. From fixation probabilities to d-player games: An inverse problem in evolutionary dynamics. Bull. Math. Biol. 2019. [Google Scholar] [CrossRef] [PubMed]
- McAvoy, A.; Adlam, B.; Allen, B.; Nowak, M.A. Stationary frequencies and mixing times for neutral drift processes with spatial structure. Proc. R. Soc. A 2018, 474, 20180238. [Google Scholar] [CrossRef]
- Slade, P.F. Quadratic coefficients of the ‘1/3-rule’ with finite population size convergence. Int. J. Math. Arch. 2019, 10, 51–59, e-ISSN 2229-5046. [Google Scholar]
- Graham, R.L.; Knuth, D.L.; Patashnik, O. Concrete Mathematics: A Foundation for Computer Science, 2nd ed.; Addison-Wesley: Upper Saddle River, NJ, USA, 1994; ISBN 978-0-201-55802-9. [Google Scholar]
- Kurokawa, S. Generalized version of the one-third law. Res. Rev. J. Zool. Sci. 2017, 5, 52–56, e-ISSN 2321-6190. [Google Scholar]
- Ladret, V.; Lessard, S. Fixation probability for a beneficial allele and a mutant strategy in a linear game under weak selection in a finite island model. Theor. Popul. Biol. 2007, 72, 409–425. [Google Scholar] [CrossRef] [PubMed]
- Newton, J. Evolutionary game theory: A renaissance. Games 2018, 9, 31. [Google Scholar] [CrossRef]
- Perc, M.; Jordan, J.J.; Rand, D.G.; Wang, Z.; Boccaletti, S.; Szolnoki, A. Statistical physics of human cooperation. Phys. Rep. 2017, 687, 1–51. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slade, P.F. Dominant Cubic Coefficients of the ‘1/3-Rule’ Reduce Contest Domains. Mathematics 2019, 7, 491. https://doi.org/10.3390/math7060491
Slade PF. Dominant Cubic Coefficients of the ‘1/3-Rule’ Reduce Contest Domains. Mathematics. 2019; 7(6):491. https://doi.org/10.3390/math7060491
Chicago/Turabian StyleSlade, Paul F. 2019. "Dominant Cubic Coefficients of the ‘1/3-Rule’ Reduce Contest Domains" Mathematics 7, no. 6: 491. https://doi.org/10.3390/math7060491
APA StyleSlade, P. F. (2019). Dominant Cubic Coefficients of the ‘1/3-Rule’ Reduce Contest Domains. Mathematics, 7(6), 491. https://doi.org/10.3390/math7060491