On an Exact Relation between ζ″(2) and the Meijer -Functions
Abstract
:1. Introduction
2. Euler-MacLaurin’s Summation Approach
3. Recurrence Relations and Explicit Evaluations of
4. Conclusions
Funding
Conflicts of Interest
References
- Titchmarsh, E.C. The Theory of the Riemann Zeta-Function, 2nd ed.; Clarendon Press: Oxford, UK, 1986. [Google Scholar]
- Borwein, P.; Choi, S.; Rooney, B.; Weirathmueller, A. The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike; Springer: New York, NY, USA, 2007. [Google Scholar]
- Chen, W.W.L. Elementary and Analytic Number Theory. 1981. Available online: http://plouffe.fr/simon/math/Elementary%20&%20Analytic%20Number%20Theory.pdf (accessed on 7 December 2016).
- Cilleruelo, J.; Córdoba, A. La Teoría de los Números; Mondadori: Madrid, Spain, 1991. [Google Scholar]
- Glaisher, J.W.L. On the constant which occurs in the formula for 11·22·33···nn. Mess. Math. 1894, 24, 1–16. [Google Scholar]
- Kinkelin, H. Über eine mit der Gammafunktion verwandte Transcendente und deren Anwendung auf die Integralrechnung. J. Reine Angew. Math. 1860, 57, 122–158. [Google Scholar] [CrossRef]
- Guillera, J.; Sondow, J. Double integrals and infinite products for some classical constants via analytic continuations of Lerch’s transcendent. Ramanujan J. 2008, 16, 247–270. [Google Scholar] [CrossRef] [Green Version]
- Berndt, B.C. Ramanujan’s Notebooks, Part I; Springer: New York, NY, USA, 1985. [Google Scholar]
- Edwards, H.M. Riemann’s Zeta Function; Dover Publications Inc.: New York, NY, USA, 2003. [Google Scholar]
- Bateman, H.; Erdélyi, A. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1953; Volume I. [Google Scholar]
- Johansson, F. Rigorous high-precision computation of the Hurwitz zeta function and its derivatives. Numer. Algorithms 2015, 69, 253–270. [Google Scholar] [CrossRef]
- Apostol, T.M. An Elementary View of Euler’s Summation Formula. Am. Math. Month. 1999, 106, 409–418. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Bernoulli and Euler Polynomials and the Euler-Maclaurin Formula. In Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th ed.; Dover: New York, NY, USA, 1972; pp. 804–806. [Google Scholar]
- Gasper, G.; Rahman, M. Basic hypergeometric series. In Encyclopedia of Mathematics and Its Applications, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Ayoub, M. Euler and the Zeta function. Am. Math. Month. 1974, 81, 1067–1086. [Google Scholar] [CrossRef]
- Vinogradov, I.M. Selected Works: Ivan Matveevič Vinogradov; Springer: Berlin, Germany, 2014. [Google Scholar]
- Odlyzko, A.M.; Schönhage, A. Fast Algorithms for Multiple Evaluations of the Riemann Zeta Function. Trans. Am. Math. Soc. 1988, 309, 797–809. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acedo, L.
On an Exact Relation between ζ″(2) and the Meijer
Acedo L.
On an Exact Relation between ζ″(2) and the Meijer
Acedo, Luis.
2019. "On an Exact Relation between ζ″(2) and the Meijer
Acedo, L.
(2019). On an Exact Relation between ζ″(2) and the Meijer