Lp Radial Blaschke-Minkowski Homomorphisms and Lp Dual Affine Surface Areas
Abstract
:1. Introduction
- (1)
- Ψ is continuous;
- (2)
- For all , ;
- (3)
- for all and all .
- (1)
- is continuous;
- (2)
- For all , ;
- (3)
- for all and all .
2. Background Materials
2.1. General Radial Blaschke Bodies
2.2. Dual Mixed Volumes
2.3. Harmonic Blaschke Sums
3. A Type of Busemann-Petty Problem
4. Brunn-Minkowski Inequalities for the Radial Blaschke-Minkowski Homomorphisms
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gardner, R.J. Geometric Tomography, 2nd ed.; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Lutwak, E. Intersection bodies and dual mixed volumes. Adv. Math. 1988, 71, 531–538. [Google Scholar] [CrossRef]
- Goodey, P.; Weil, W. Intersection bodies and ellipsoids. Mathematika 1995, 42, 295–304. [Google Scholar] [CrossRef]
- Kalton, N.J.; Koldobsky, A. Intersection bodies and Lp spaces. Adv. Math. 2005, 196, 257–275. [Google Scholar] [CrossRef]
- Koldobsky, A. Intersection bodies in R4. Adv. Math. 1998, 136, 1–14. [Google Scholar] [CrossRef]
- Koldobsky, A. Second derivative test for intersection bodies. Adv. Math. 1998, 136, 15–25. [Google Scholar] [CrossRef]
- Koldobsky, A. A functional analytic approach to intersection bodies. Geom. Funct. Anal. 2000, 10, 1507–1526. [Google Scholar] [CrossRef]
- Leng, G.; Zhao, C. Brunn-Minkowski inequality for mixed intersection bodies. J. Math. Anal. Appl. 2005, 301, 115–123. [Google Scholar]
- Lu, F.H.; Mao, W.H.; Leng, G.S. On star duality of mixed intersection bodies. J. Inequal. Appl. 2007, 2007, 39345. [Google Scholar]
- Ludwig, M. Intersection bodies and valuations. Am. J. Math. 2006, 128, 1409–1428. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.Y. Centered bodies and dual mixed volumes. Trans. Am. Math. Soc. 1994, 345, 777–801. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.Y. Intersection bodies and polytopes. Mathematika 1999, 46, 29–34. [Google Scholar] [CrossRef]
- Gardner, R.J. Intersection bodies and the Busemann-Petty problem. Trans. Am. Math. Soc. 1994, 342, 435–445. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.Y. A positive solution to the Busemann-Petty problem in . Ann. Math. 1999, 149, 535–543. [Google Scholar] [CrossRef]
- Gardner, R.J. A positive answer to the Busemann-Petty problem in three dimensions. Ann. Math. 1994, 140, 435–447. [Google Scholar] [CrossRef]
- Gardner, R.J.; Koldobsky, A.; Schlumprecht, T. An analytic solution to the Busemann-Petty problem on sections of convex bodies. Ann. Math. 1999, 149, 691–703. [Google Scholar] [CrossRef]
- Koldobsky, A. Intersection bodies and the Busemann-Petty problem. C. R. Acad. Sci. Paris Ser. I Math. 1997, 325, 1181–1186. [Google Scholar] [CrossRef]
- Koldobsky, A. Intersection bodies, positive definite distributions, and the Busemann-Petty problem. Am. J. Math. 1998, 120, 827–840. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.Y. Intersection bodies and the four-dimensional Busemann-Petty problem. Duke Math. J. 1993, 71, 233–240. [Google Scholar]
- Zhang, G.Y. Intersection bodies and the Busemann-Petty inequalities in . Ann. Math. 1994, 140, 331–346. [Google Scholar] [CrossRef]
- Schuster, F.E. Volume inequalities and additive maps of convex bodies. Mathematika 2006, 53, 211–234. [Google Scholar] [CrossRef]
- Schuster, F.E. Valuations and Busemann-Petty type problems. Adv. Math. 2008, 219, 344–368. [Google Scholar] [CrossRef]
- Wang, W.; Liu, L.J.; He, B.W. Lp radial Blaschke-Minkowski homomorphisms. Taiwan J. Math. 2011, 15, 1183–1199. [Google Scholar] [CrossRef]
- Alesker, S.; Bernig, A.; Schuster, F.E. Harmonic analysis of translation invariant valuations. Geom. Funct. Anal. 2011, 10, 751–773. [Google Scholar] [CrossRef]
- Feng, Y.B.; Wang, W.D.; Yuan, J. Differences of quermass- and dual quermassintegrals of Blaschke-Minkowski and radial Blaschke-Minkowski homomorphisms. Bull. Belg. Math. Soc.-Sim 2014, 21, 577–592. [Google Scholar]
- Liu, L. Mixed radial Blaschke-Minkowski homomorphisms and comparison of volumes. Math. Inequal. Appl. 2013, 16, 401–412. [Google Scholar] [CrossRef]
- Wang, W. Lp Blaschke-Minkowski homomorphisms. J. Inequal. Appl. 2013, 2013, 140. [Google Scholar] [CrossRef]
- Wei, B.; Wang, W.D.; Lu, F.H. Inequalities for radial Blaschke-Minkowski homomorphisms. Ann. Pol. Math. 2015, 113, 243–253. [Google Scholar] [CrossRef]
- Zhao, C.J. Radial Blaschke-Minkowski homomorphisms and volume differences. Geom. Dedic. 2011, 154, 81–91. [Google Scholar] [CrossRef]
- Zhao, C.J. On radial Blaschke-Minkowski homomorphisms. Geom. Dedic. 2013, 167, 1–10. [Google Scholar] [CrossRef]
- Zhao, C.J. On raidal and polar Blaschke-Minkowski homomorphisms. Proc. Am. Math. Soc. 2013, 141, 667–676. [Google Scholar] [CrossRef]
- Zhao, C.J. On Blaschke-Minkowski homomorphisms and radial Blaschke-Minkowski homomorphisms. J. Geom. Anal. 2015, 25, 1523–1538. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, W.D. Some Brunn-Minkowski type inequalities for Lp radial Blaschke-Minkowski homomorphisms. J. Inequal. Appl. 2016, 2016, 183. [Google Scholar] [CrossRef]
- Wang, W.; Yuan, J.; He, B.W. Inequalities for Lp-dual affine surface area. Math. Inequal. Appl. 2010, 7, 34–45. [Google Scholar]
- Wang, J.Y.; Wang, W.D. General Lp-dual Blaschke bodies and the applications. J. Inequal. Appl. 2015, 2015, 233. [Google Scholar] [CrossRef]
- Feng, Y.B.; Wang, W.D. Some inequalities for Lp-dual affine surface area. Math. Inequal. Appl. 2014, 17, 431–441. [Google Scholar]
- Pei, Y.N.; Wang, W.D. A type of Busemann-Petty problems for general Lp-intersection bodies. Wuhan Univ. J. Natural Sci. 2015, 20, 471–475. [Google Scholar] [CrossRef]
- Wan, X.Y.; Wang, W.D. Lp-dual mixed affine surface area. Ukra. Math. J. 2016, 68, 679–688. [Google Scholar] [CrossRef]
- Wang, J.Y.; Wang, W.D. Lp-dual affine surface area forms of Busemann-Petty type problems. Proc. Indian Acad. Sci. (Math. Sci.) 2015, 125, 71–77. [Google Scholar] [CrossRef]
- Wei, B.; Wang, W.D. Some inequalities for general Lp-harmonic Blaschke bodies. J. Math. Inequal. 2016, 10, 63–73. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, W.D.; Si, L. The mixed Lp-dual affine surface area for multiple star bodies. J. Nonlinear Sci. Appl. 2016, 9, 2813–2822. [Google Scholar]
- Lutwak, E. The Brunn-Minkowski-Firey theory II: Affine and Geominimal Surface Areas. Adv. Math. 1996, 118, 244–294. [Google Scholar] [CrossRef]
- Gardner, R.J. The Brunn-Minkowski inequality. Bull. Am. Math. Soc. 2002, 39, 355–405. [Google Scholar] [CrossRef]
- Schneider, R. Convex Bodies: The Brunn-Minkowski Theory, 2nd ed.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Grinberg, E.; Zhang, G.Y. Convolutions, transforms and convex bodies. Proc. Lond. Math. Soc. 1999, 78, 77–115. [Google Scholar] [CrossRef]
- Haberl, C. Lp intersection bodies. Adv. Math. 2008, 217, 2599–2624. [Google Scholar] [CrossRef]
- Lutwak, E. Centroid bodies and dual mixed volumes. Proc. Lond. Math. Soc. 1999, 60, 365–391. [Google Scholar] [CrossRef]
- Feng, Y.B.; Wang, W.D. Shephard type problems for Lp-centroid bodies. Math. Inequal. Appl. 2014, 17, 865–877. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Z.; Wang, W. Lp Radial Blaschke-Minkowski Homomorphisms and Lp Dual Affine Surface Areas. Mathematics 2019, 7, 343. https://doi.org/10.3390/math7040343
Shen Z, Wang W. Lp Radial Blaschke-Minkowski Homomorphisms and Lp Dual Affine Surface Areas. Mathematics. 2019; 7(4):343. https://doi.org/10.3390/math7040343
Chicago/Turabian StyleShen, Zhonghuan, and Weidong Wang. 2019. "Lp Radial Blaschke-Minkowski Homomorphisms and Lp Dual Affine Surface Areas" Mathematics 7, no. 4: 343. https://doi.org/10.3390/math7040343
APA StyleShen, Z., & Wang, W. (2019). Lp Radial Blaschke-Minkowski Homomorphisms and Lp Dual Affine Surface Areas. Mathematics, 7(4), 343. https://doi.org/10.3390/math7040343