The Time-Optimal Control Problem of a Kind of Petrowsky System
Abstract
:1. Introduction
2. The Conditions for the Null Controllability of Constructed Control Problem
3. Existence of Time-optimal Control
4. Bang-Bang Property for Time-Optimal Control of Petrowsky System
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Curtain, R.F.; Zwart, H. An Introduction to Infinite-Dimensional Linear Systems Theory; Springer: New York, NY, USA, 1995. [Google Scholar]
- Sadek, I.; Abukhaled, M.; Abualrub, T. Coupled Galerkin and parameterization methods for optimal control of discretely connected parallel beams. Appl. Math. Model. 2010, 34, 3949–3957. [Google Scholar] [CrossRef]
- Guo, B.Z.; Zhang, Q. On harmonic Disturbance Rejection of an undamped Euler-Bernouli Beam with Rigid tip Body. Esaim Control Optim. Calc. Var. 2011, 10, 615–623. [Google Scholar] [CrossRef]
- Chan, W.L.; Zhu, G.B. Pointwise Stabilization for a Chain of Coupled Vibrating Strings. IMA J. Math. Control Inf. 1990, 7, 307–315. [Google Scholar] [CrossRef]
- Chen, G. Control and stabilization for the wave equation in a bounded domain. Siam J. Control Optim. 1979, 17, 114–122. [Google Scholar] [CrossRef]
- Han, H.; Cao, D.; Liu, L. Green’s functions for forced vibration analysis of bending-torsion coupled Timoshenko beam. Appl. Math. Model. 2017, 45, 621–635. [Google Scholar] [CrossRef]
- Lin, C.Y.; Huang, Y.H.; Chen, W.T. Multimodal suppression of vibration in smart flexible beam using piezoelectric electrode-based switching control. Mechatronics 2018, 53, 152–167. [Google Scholar] [CrossRef]
- Sayed, T.A.; Mongy, H.H. Application of variational iteration method to free vibration analysis of a tapered beam mounted on two-degree of freedom subsystems. Appl. Math. Model. 2018, 58. [Google Scholar] [CrossRef]
- Ding, H.; Zhu, M.H.; Chen, L.Q. Nonlinear vibration isolation of a viscoelastic beam. Nonlinear Dyn. 2018, 92, 325–349. [Google Scholar] [CrossRef]
- Ma, J.; Liu, F.; Nie, M.; Wang, J. Nonlinear free vibration of a beam on Winkler foundation with consideration of soil mass motion of finite depth. Nonlinear Dyn. 2018, 92, 429–441. [Google Scholar] [CrossRef]
- Zhang, C.G.; Zhao, H.L.; Liu, K.S. Exponential stabilization of a nonhomogeneous Timoshenko beam with the coupled control of locally distributed feedback and boundary feedback. Chin. Ann. Math. Ser. A 2003, 6, 757–764. [Google Scholar]
- Liu, K.; Liu, Z. Analyticity and Differentiability of Semigroups Associated with Elastic Systems with Damping and Gyroscopic Forces. J. Differ. Equ. 1997, 141, 340–355. [Google Scholar] [CrossRef] [Green Version]
- Liu, K. Equivalentness Between Controllability and Stabilizability for Conservative Systems and Applications. Annu. Math. 1994, 39, 1424–1429. (In Chinese) [Google Scholar]
- Zong, X.; Zhao, Y. Controllability of Petrowsky equation in bounded domain: A functional approach. Control Theory Appl. 2007, 24, 380–384. [Google Scholar]
- Nakoulima, O.; Omrane, A.; Velin, J. On the Pareto Control and No-Regret Control for Distributed Systems with Incomplete Data. Siam J. Control Optim. 2012, 42, 1167–1184. [Google Scholar] [CrossRef]
- Abukhaled, M. Optimal control of thermoelastic beam vibrations by piezoelectric actuation. J. Control Theory Appl. 2013, 11, 463–467. [Google Scholar]
- Khorshidi, K.; Rezaei, E.; Ghadimi, A.; Pagoli, M. Active vibration control of circular plates coupled with piezoelectric layers excited by plane sound wave. Appl. Math. Model. 2015, 39, 1217–1228. [Google Scholar] [CrossRef]
- Ismail, K.; Kenan, Y.; Sarp, A. Optimal piezoelectric control of a plate subject to time-dependent boundary moments and forcing function for vibration damping. Comput. Math. Appl. 2015, 69, 291–303. [Google Scholar]
- Hu, H.; Tang, B.; Zhao, Y. Active control of structures and sound radiation modes and its application in vehicles. J. Low Freq. Noise Vib. Act. Control 2016, 35, C291–C302. [Google Scholar] [CrossRef]
- Abualrub, T.; Abukhaled, M.; Jamal, B. Wavelets approach for the optimal control of vibrating plates by piezoelectric patches. J. Vib. Control 2016, 1–8. [Google Scholar] [CrossRef]
- Kattimani, S.C.; Ray, M.C. Vibration control of multiferroic fibrous composite plates using active constrained layer damping. Mech. Syst. Signal Process. 2018, 106, 334–354. [Google Scholar] [CrossRef]
- Li, L.; Liao, W.H.; Zhang, D.; Zhang, Y. Vibration control and analysis of a rotating flexible FGM beam with a lumped mass in temperature field. Compos. Struct. 2019, 208, 244–260. [Google Scholar] [CrossRef]
- Troltzsch, F. Optimal Control of Partial Differential Equations, Theory, Mehtods and Applications: Graduate Studies in Mathematics; AMS: Providence, RI, USA, 2010; Volume 112. [Google Scholar]
- Phung, K.D.; Wang, G. Quantitative Unique Continuation for the Semilinear Heat Equation in a Convex Domain. J. Funct. Anal. 2010, 259, 1230–1247. [Google Scholar] [CrossRef]
- Kunisch, K.; Wang, L.J. Time Optimal Control of the Heat Equation with Pointwise Control Constrains. ESIAM Control Opim. Calc. Var. 2013, 19, 460–485. [Google Scholar] [CrossRef]
- Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations; Springer: Berlin, Germany, 1983. [Google Scholar]
- Kunisch, K.; Wang, L.J. Bang-bang Property of Time Optimal Controls of Burgers equation. Discret. Contin. Dyn. Syst. 2014, 34, 3611–3637. [Google Scholar] [CrossRef]
- Phung, K.D.; Wang, L.J.; Zhang, C. Bang-bang property for Time Optimal Control of Semilinear Heat Equation. Ann. Inst. Henry Poincare Nonlinear Anal. 2014, 31, 477–499. [Google Scholar] [CrossRef]
- Kunisch, K.; Wang, L.J. Bang-bang Property Of Time Optimal Control of Semilinear Parabolic Equation. Discret. Contin. Dyn. Syst. 2016, 36, 279–302. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, D.; Wei, W.; Deng, H.; Liao, Y. The Time-Optimal Control Problem of a Kind of Petrowsky System. Mathematics 2019, 7, 311. https://doi.org/10.3390/math7040311
Luo D, Wei W, Deng H, Liao Y. The Time-Optimal Control Problem of a Kind of Petrowsky System. Mathematics. 2019; 7(4):311. https://doi.org/10.3390/math7040311
Chicago/Turabian StyleLuo, Dongsheng, Wei Wei, Hongyong Deng, and Yumei Liao. 2019. "The Time-Optimal Control Problem of a Kind of Petrowsky System" Mathematics 7, no. 4: 311. https://doi.org/10.3390/math7040311
APA StyleLuo, D., Wei, W., Deng, H., & Liao, Y. (2019). The Time-Optimal Control Problem of a Kind of Petrowsky System. Mathematics, 7(4), 311. https://doi.org/10.3390/math7040311