Next Article in Journal
Generalized Hyers-Ulam Stability of the Pexider Functional Equation
Previous Article in Journal
A Decision Support System for Dynamic Job-Shop Scheduling Using Real-Time Data with Simulation
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On a Coupled System of Fractional Differential Equations with Four Point Integral Boundary Conditions

Eastern Mediterranean University, Gazimagusa, T.R. North Cyprus, 99628 Mersin 10, Turkey
*
Author to whom correspondence should be addressed.
Mathematics 2019, 7(3), 279; https://doi.org/10.3390/math7030279
Submission received: 29 January 2019 / Revised: 8 March 2019 / Accepted: 18 March 2019 / Published: 19 March 2019
(This article belongs to the Section Mathematics and Computer Science)

Abstract

:
The study is on the existence of the solution for a coupled system of fractional differential equations with integral boundary conditions. The first result will address the existence and uniqueness of solutions for the proposed problem and it is based on the contraction mapping principle. Secondly, by using Leray–Schauder’s alternative we manage to prove the existence of solutions. Finally, the conclusion is confirmed and supported by examples.

1. Introduction

Fractional calculus and more specifically coupled fractional differential equations are amongst the strongest tools of modern mathematics as they play a key role in developing differential models for high complexity systems. Examples include the quantum evolution of complex systems [1], dynamical systems of distributed order [2], chuashirku [3], Duffing system [4], Lorentz system [5], anomalous diffusion [6,7], nonlocal thermoelasticity systems [8,9], secure communication and control processing [10], synchronization of coupled chaotic systems of fractional order [11,12,13,14], etc. In terms of developing high complexity models, applications of coupled fractional differential equations can be significantly extended by dealing with various types of integral boundary conditions. Integral boundary conditions are in fact essential for obtaining reliable models in many practical problems, such as regularization of parabolic inverse problems [15] and flow analysis in computational fluid dynamics [16].
Some of the latest studies on integral and nonlocal boundary value problems for coupled fractional differential equations are presented in [17,18,19,20,21,22,23,24,25].
In [26], the following coupled system of fractional differential equations was studied:
D α x t = f t , x t , y t D γ y t , t 0 , T , 1 < α 2 , 0 < γ < 1 , D β y t = g t , x t , D δ x t , y t , t 0 , T , 1 < β 2 , 0 < δ < 1 ,
supplemented with the coupled nonlocal and integral boundary conditions of the form
x 0 = h y , 0 T y s d s = μ 1 x η y 0 = ϕ x , 0 T x s d s = μ 2 y ξ , η , ξ 0 , T
where D i denotes the Caputo fractional derivatives of order i = α , β , γ , δ and f , g : 0 , T × R × R × R R , h , ϕ : C 0 , T , R R are given continuous functions, and μ 1 , μ 2 are real constants.
In [27], the authors investigated the existence and uniqueness of solutions for the coupled system of nonlinear fractional differential equations with three-point boundary conditions, given below:
D α u t = f t , v t , D p v t , t 0 , 1 , D β v t = g t , u t , D q u t , t 0 , 1 , u 0 = 0 , u 1 = γ u η , v 0 = 0 , v 1 = γ v η , .
where 1 < α , β < 2 , p , q , γ > 0 , 0 < η < 1 , α q 1 , β p 1 , γ η α 1 < 1 , γ η β 1 < 1 , and D is the standard Riemann–Liouville fractional derivative and f , g : 0 , 1 × R × R × R are given continuous functions. It is worth mentioning that the nonlinear terms in the coupled system contain the fractional derivatives of the unknown functions.
Moreover, in a study [28], the following coupled system of nonlinear fractional differential equations, with the given boundary conditions was studied:
D α u t = f t , v t , D μ v t , 0 < t < 1 , D β v t = g t , u t , D ν u t , 0 < t < 1 , u 0 = u 1 = v 0 = v 1 = 0 ,
where 1 < α , β < 2 , μ , ν > 0 , α ν 1 , β μ 1 , and f , g : 0 , 1 × R × R R are given functions and D is the standard Riemann–Liouville differentiation.
The present paper is motivated by the above papers and is aimed to study a coupled system of nonlinear fractional differential equations:
D α x t = f t , x t , y t , D γ y ( t ) , t 0 , T 1 < α 2 , 0 < γ < 1 D β y t = g t , x t , D σ x ( t ) , y t , t 0 , T 1 < β 2 , 0 < σ < 1
supported by integral boundary conditions of the form
0 T x s d s = ρ 1 y ζ 1 , 0 T x s d s = ρ 2 y ζ 2 0 T y s d s = μ 1 x η 1 , 0 T y s d s = μ 2 x η 2 η 1 , η 2 , ζ 1 , ζ 2 0 , T , ,
where D k denote the Caputo fractional derivatives of order k , and f , g : 0 , T × R 3 R , are given continuous functions, and ρ 1 , ρ 2 , μ 1 , μ 2 are real constants.
The paper is organized as follows. In Section 2, we recall some definitions from fractional calculus, and state and prove an auxiliary lemma, which gives an explicit formula for a solution of nonhomogeneous equation correspond to our problem. The main results for the coupled system of Caputo fractional differential equations with integral boundary conditions, using the Banach fixed point theorem and Leray-Schauder alternative, are presented in Section 3. The paper concludes with concrete examples.

2. Preliminaries

Firstly, we recall definitions of fractional derivative and integral [29,30].
Definition 1.
The Riemann-Liouville fractional integral of order α for a continuous function h is given by
I s α h s = 1 Γ α 0 s h t s t 1 α d t , α > 0
provided that the integral exists on R + .
Definition 2.
The Caputo fractional derivatives of order α for m 1 —times absolutely continuous function h : 0 , R is defined as
D α h s = 1 Γ m α 0 s s t m α 1 h m t d t , m 1 < α < m , m = α + 1 ,
where α is the integer part of the real number α.
We use the following notations.
Δ 1 = T 2 μ 1 ρ 1 0 , Δ 2 = T 2 μ 2 ρ 2 0 ,
Θ 1 t : = 2 T ρ 1 ζ 1 μ 2 ρ 2 T 4 ρ 2 + 2 T ρ 1 μ 1 η 1 ρ 2 T 2 μ 2 ρ 1 ρ 2 Δ 1 Δ 2 + ρ 2 T t Δ 2 . Θ 2 t : = 2 T 2 ρ 1 ζ 1 + T 3 ρ 2 2 ρ 1 μ 1 η 1 ρ 2 + ρ 1 T 3 Δ 1 Δ 2 ρ 2 t Δ 2 , Θ 3 : = T ρ 1 Δ 1 , Θ 4 : = ρ 1 Δ 1 .
Ξ 1 t : = 2 T 2 ρ 1 ζ 1 μ 2 T 3 ρ 2 μ 2 + 2 ρ 1 μ 1 η 1 ρ 2 μ 2 ρ 1 μ 2 T 3 Δ 1 Δ 2 + t μ 2 ρ 2 Δ 2 Ξ 2 t : = 2 T ρ 1 ζ 1 μ 2 + T 4 2 T ρ 1 μ 1 η 1 + T 2 ρ 1 μ 2 Δ 1 Δ 2 T t Δ 2 , Ξ 3 : = ρ 1 μ 1 Δ 1 , Ξ 4 : = T Δ 1 .
Θ ^ 1 t : = 1 Δ 1 ρ 2 T T μ 1 η 1 1 Δ 2 μ 1 T 2 2 1 Δ 2 + μ 2 ρ 2 μ 1 ρ 1 ζ 1 1 Δ 2 T 3 2 1 Δ 2 + 1 Δ 2 μ 2 ρ 2 t . Θ ^ 2 t : = 1 Δ 1 ρ 2 T μ 1 η 1 1 Δ 2 μ 1 T 2 2 1 Δ 2 T μ 1 ρ 1 ζ 1 1 Δ 2 T 3 2 1 Δ 2 1 Δ 2 T t , Θ ^ 3 : = 1 Δ 1 ρ 1 μ 1 , Θ ^ 3 : = T Δ 1 .
Ξ ^ 1 t : = 1 Δ 1 μ 2 ρ 2 T μ 1 η 1 1 Δ 2 μ 1 T 2 2 1 Δ 2 + μ 2 T μ 1 ρ 1 ζ 1 1 Δ 2 T 3 2 1 Δ 2 + 1 Δ 2 μ 2 T t Ξ ^ 2 t : = 1 Δ 1 T T μ 1 η 1 1 Δ 2 μ 1 T 2 2 1 Δ 2 μ 2 μ 1 ρ 1 ζ 1 1 Δ 2 T 3 2 1 Δ 2 1 Δ 2 μ 2 t , Ξ ^ 3 : = μ 1 T Δ 1 , Ξ ^ 4 : = μ 1 Δ 1 .
To show that the problem (1) and (2) is equivalent to the problem of finding solutions to the Volterra integral equation, we need the following auxiliary lemma
Lemma 1.
Let w , z C 0 , T , R . Then the unique solution for the problem
D α x t = w t , t 0 , T , 1 < α 2 , D β y t = z t , t 0 , T , 1 < β 2 , 0 T x s d s = ρ 1 y ζ 1 , 0 T x s d s = ρ 2 y ζ 2 0 T y s d s = μ 1 x η 1 , 0 T y s d s = μ 2 x η 2
is
x t = Θ 1 t I β 1 z ζ 2 + Θ 2 t 0 T I β 1 z s d s + Θ 3 I β z ζ 1 Θ 4 0 T I β z s d s + Ξ 1 t I α 1 w η 2 + Ξ 2 t 0 T I α 1 w s d s + Ξ 3 I α w η 1 Ξ 4 0 T I α w s d s + 0 t t s α 1 Γ α w s d s
and
y t = Θ ^ 1 t I β 1 z ζ 2 + Θ ^ 2 t 0 T I β 1 z s d s + Θ ^ 3 I β z ζ 1 Θ ^ 4 0 T I β z s d s + Ξ ^ 1 t I α 1 w η 2 + Ξ ^ 2 t 0 T I α 1 w s d s + Ξ ^ 3 I α w η 1 Ξ ^ 4 0 T I α w s d s + 0 t t s β 1 Γ β z s d s
Proof. 
We know that, see [30] Lemma 2.12, the general solutions for the FDE in (3) is defined as
x ( t ) = c 1 t + c 2 + I α w t y ( t ) = d 1 t + d 2 + I β z t ,
where c 1 , c 2 , d 1 , d 2 R are arbitrary constants. It follows that
x ( t ) = c 1 + I α 1 w t , y ( t ) = d 1 + I β 1 z t .
Applying the conditions
0 T x s d s = ρ 2 y ζ 2 , 0 T y s d s = μ 2 x η 2
we get
c 1 T + 0 T I α 1 w s d s = ρ 2 d 1 + ρ 2 I β 1 z ζ 2 , d 1 T + 0 T I β 1 z s d s = μ 2 c 1 + μ 2 I α 1 w η 2 .
Solving the above equations together for c 1 and d 1 we get
c 1 = 1 Δ 2 ρ 2 T I β 1 z ζ 2 ρ 2 0 T I β 1 z s d s + μ 2 ρ 2 I α 1 w η 2 T 0 T I α 1 w s d s
d 1 = 1 Δ 2 μ 2 T I α 1 w η 2 μ 2 0 T I α 1 w s d s + μ 2 ρ 2 I β 1 z ζ 2 T 0 T I β 1 z s d s
Considering the following boundary conditions not involving derivatives
0 T x s d s = ρ 1 y ζ 1 , 0 T y s d s = μ 1 x η 1 ,
we get
c 2 T ρ 1 d 2 = ρ 1 d 1 ζ 1 + ρ 1 I β z ζ 1 c 1 T 2 2 0 T I α w s d s , d 2 T μ 1 c 2 = μ 1 c 1 η 1 + μ 1 I α w η 1 d 1 T 2 2 0 T I β z s d s .
This implies
c 2 = 1 Δ 1 T ρ 1 d 1 ζ 1 + ρ 1 T I β z ζ 1 c 1 T 3 2 T 0 T I α w s d s + ρ 1 μ 1 c 1 η 1 + ρ 1 μ 1 I α w η 1 ρ 1 d 1 T 2 2 ρ 1 0 T I β z s d s ,
d 2 = 1 Δ 1 T μ 1 c 1 η 1 + μ 1 T I α w η 1 d 1 T 3 2 T 0 T I β z s d s + μ 1 ρ 1 d 1 ζ 1 + ρ 1 μ 1 I β z ζ 1 c 1 μ 1 T 2 2 μ 1 0 T I α w s d s .
Inserting the values of c 1 and d 1 we get
c 2 = 2 T ρ 1 ζ 1 μ 2 ρ 2 T 4 ρ 2 + 2 T ρ 1 μ 1 η 1 ρ 2 T 2 μ 2 ρ 1 ρ 2 2 Δ 1 Δ 2 I β 1 z ζ 2 + 2 T 2 ρ 1 ζ 1 + T 3 ρ 2 2 ρ 1 μ 1 η 1 ρ 2 + ρ 1 T 3 2 Δ 1 Δ 2 0 T I β 1 z s d s + T ρ 1 Δ 1 I β z ζ 1 ρ 1 Δ 1 0 T I β z s d s + 2 T 2 ρ 1 ζ 1 μ 2 T 3 ρ 2 μ 2 + 2 ρ 1 μ 1 η 1 ρ 2 μ 2 ρ 1 μ 2 T 3 2 Δ 1 Δ 2 I α 1 w η 2 + 2 T ρ 1 ζ 1 μ 2 + T 4 2 T ρ 1 μ 1 η 1 + T 2 ρ 1 μ 2 2 Δ 1 Δ 2 0 T I α 1 w s d s + ρ 1 μ 1 Δ 1 I α w η 1 T Δ 1 0 T I α w s d s ,
d 2 = 2 ρ 2 T 2 μ 1 η 1 ρ 2 μ 1 T 3 + 2 μ 2 ρ 2 μ 1 ρ 1 ζ 1 μ 2 ρ 2 T 3 2 Δ 1 Δ 2 I β 1 z ζ 2 + 2 T ρ 2 μ 1 η 1 + ρ 2 μ 1 T 2 2 T μ 1 ρ 1 ζ 1 T 4 2 Δ 1 Δ 2 0 T I β 1 z s d s + 1 Δ 1 ρ 1 μ 1 I β z ζ 1 1 Δ 1 T 0 T I β z s d s + 2 T μ 2 ρ 2 μ 1 η 1 μ 2 ρ 2 μ 1 T 2 + 2 μ 2 T μ 1 ρ 1 ζ 1 μ 2 T 4 2 Δ 1 Δ 2 I α 1 w η 2 + 2 T 2 μ 1 η 1 + μ 1 T 3 2 μ 2 ρ 2 μ 1 ρ 1 ζ 1 + μ 2 T 3 2 Δ 1 Δ 2 0 T I α 1 w s d s + μ 1 T 1 Δ 1 I α w η 1 μ 1 1 Δ 1 0 T I α w s d s .
Substituting c 1 , c 2 , d 1 , d 2 in (6) we get (4) and (5). □
Remark 1.
In (4) and (5) x t and y t depend on η i , ζ i , μ i , ρ i , i = 1 , 2 .

3. Existence Results

Consider the space
C γ 0 , T , R = x ( t ) : x ( t ) C 0 , T , R a n d D γ x ( t ) C 0 , T , R ,
with the norm
x γ = x + D γ x = max 0 t T x t + max 0 t T D γ x ( t ) .
It is clear that C γ 0 , T , R , · γ is a Banach space. Consequently, the product space C σ 0 , T , R × C γ 0 , T , R , · σ × γ is a Banach Space with the norm x , y σ × γ = x σ + y γ for x , y C σ 0 , T , R × C γ 0 , T , R .
Next, using Lemma 1, we define the operator G : C σ 0 , T , R × C γ 0 , T , R C σ 0 , T , R × C γ 0 , T , R as follows
G x , y ( t ) = G 1 x , y ( t ) , G 2 x , y ( t ) ,
where
G 1 x , y ( t ) = Θ 1 t I β 1 g · , x ( · ) , y ( · ) , D σ x ( · ) ζ 2 + Θ 2 t 0 T I β 1 g · , x ( · ) , y ( · ) , D σ x ( · ) s d s + Θ 3 I β g · , x ( · ) , y ( · ) , D σ x ( · ) ζ 1 Θ 4 0 T I β g · , x ( · ) , y ( · ) , D σ x ( · ) s d s + Ξ 1 t I α 1 f · , x ( · ) , y ( · ) , D γ y ( · ) η 2 + Ξ 2 t 0 T I α 1 f · , x ( · ) , y ( · ) , D γ y ( · ) s d s + Ξ 3 I α f · , x ( · ) , y ( · ) , D γ y ( · ) η 1 Ξ 4 0 T I α f · , x ( · ) , y ( · ) , D γ y ( · ) s d s + 0 t t s α 1 Γ α f s , x ( s ) , y ( s ) , D γ y ( s ) d s ,
and
G 2 x , y ( t ) = Θ ^ 1 t I β 1 g · , x ( · ) , y ( · ) , D σ x ( · ) ζ 2 + Θ ^ 2 t 0 T I β 1 g · , x ( · ) , y ( · ) , D σ x ( · ) s d s + Θ ^ 3 I β g · , x ( · ) , y ( · ) , D σ x ( · ) ζ 1 Θ ^ 4 0 T I β g · , x ( · ) , y ( · ) , D σ x ( · ) s d s + Ξ ^ 1 t I α 1 f · , x ( · ) , y ( · ) , D γ y ( · ) η 2 + Ξ ^ 2 t 0 T I α 1 f · , x ( · ) , y ( · ) , D γ y ( · ) s d s + Ξ ^ 3 I α f · , x ( · ) , y ( · ) , D γ y ( · ) η 1 Ξ ^ 4 0 T I α f · , x ( · ) , y ( · ) , D γ y ( · ) s d s + 0 t t s β 1 Γ β g s , x ( s ) , y ( s ) , D σ x ( s ) d s .
In what follows we use the following notations.
Θ = Θ 1 ζ 2 β 1 Γ β + Θ 2 T β 1 Γ β + Θ 3 ζ 1 β Γ β + 1 + Θ 4 T β Γ β + 1 + T 1 σ Γ 2 σ Θ 1 ζ 2 β 1 Γ β + Θ 2 T β 1 Γ β , Ξ = Ξ 1 η 2 α 1 Γ α + Ξ 2 T α 1 Γ α + Ξ 3 η 1 α Γ α + 1 + Ξ 4 T α Γ α + 1 + T α Γ α + 1 + T 1 σ Γ 2 σ Ξ 1 η 2 α 1 Γ α + Ξ 2 T α 1 Γ α + T α 1 Γ α .
Θ ^ = Θ ^ 1 ζ 2 β 1 Γ β + Θ ^ 2 T β 1 Γ β + Θ ^ 3 ζ 1 β Γ β + 1 + Θ ^ 4 T β Γ β + 1 + T 1 γ Γ 2 γ Θ ^ 1 ζ 2 β 1 Γ β + Θ ^ 2 T β 1 Γ β , Ξ ^ = Ξ ^ 1 η 2 α 1 Γ α + Ξ ^ 2 T α 1 Γ α + Ξ ^ 3 η 1 α Γ α + 1 + Ξ ^ 4 T α Γ α + 1 + T β Γ β + 1 + T 1 γ Γ 2 γ Ξ ^ 1 η 2 α 1 Γ α + Ξ ^ 2 T α 1 Γ α + T β 1 Γ β ,
where Θ i t , Θ ^ i t , Ξ i t , Ξ ^ i t , i = 1 , , 4 , are defined before Lemma 1.
Now we state and prove our first main result.
Theorem 1.
Let f , g : 0 , T × R 3 R be jointly continuous functions. Assume that
(i) 
there exist constants l f > 0 , l g > 0 , t 0 , T and x i , y i R , i = 1 , 2 , 3
f t , x 1 , x 2 , x 3 f t , y 1 , y 2 , y 3 l f x 1 y 1 + x 2 y 2 + x 3 y 3 ,
g t , x 1 , x 2 , x 3 g t , y 1 , y 2 , y 3 l g x 1 y 1 + x 2 y 2 + x 3 y 3 .
(ii) 
1 2 Θ l g + Ξ l f > 0 , 1 2 Θ ^ l g + Ξ ^ l f > 0 .
Then the boundary value problem (1), (2) has a unique solution on 0 , T .
Proof. 
Assume that ε > 0 is a real number satisfying
ε max 2 Θ g 0 + Ξ f 0 1 2 Θ l g + Ξ l f , 2 Θ ^ g 0 + Ξ ^ f 0 1 2 Θ ^ l g + Ξ ^ l f ,
where
max 0 t T f t , 0 , 0 , 0 = f 0 < , max 0 t T g t , 0 , 0 , 0 = g 0 < .
Define
Ω ε = x , y C σ 0 , T , R × C γ 0 , T , R : x , y σ × γ ε .
Step 1: Show that G Ω ε Ω ε .
By our assumption, for x , y Ω ε , t 0 , T , we have
f t , x t , y t , D γ y ( t ) f t , x t , y t , D γ y ( t ) f t , 0 , 0 , 0 + f t , 0 , 0 , 0 l f x ( t ) + y ( t ) + D γ y ( t ) + f 0 l f x σ + y γ + f 0 l f ε + f 0 ,
similarly, we have
g t , x t , D σ x ( t ) , y t l g ε + g 0 .
Using these estimates, we get
G 1 x , y ( t ) Θ 1 t I β 1 g ζ 2 + Θ 2 t 0 T I β 1 g s d s + Θ 3 I β g ζ 1 + Θ 4 0 T I β g s d s + Ξ 1 t I α 1 f η 2 + Ξ 2 t 0 T I α 1 f s d s + Ξ 3 I α f η 1 + Ξ 4 0 T I α f s d s + 1 Γ α 0 t t s α 1 f s , x ( s ) , y ( s ) , D γ y ( s ) d s .
We use the following type inequalities
I β 1 g ζ 2 = 1 Γ β 1 0 ζ 2 t s β 2 g s d s 1 Γ β 1 0 ζ 2 t s β 2 d s g = ζ 2 β 1 Γ β g ,
to get
G 1 x , y ( t ) Θ 1 t I β 1 1 ζ 2 + Θ 2 t 0 T I β 1 1 s d s + Θ 3 I β 1 ζ 1 + Θ 4 0 T I β 1 s d s g + Ξ 1 t I α 1 1 η 2 + Ξ 2 t 0 T I α 1 1 s d s + Ξ 3 I α 1 η 1 + Ξ 4 0 T I α 1 s d s f + 1 Γ α 0 t t s α 1 d s f Θ 1 ζ 2 β 1 Γ β + Θ 2 T β 1 Γ β + Θ 3 ζ 1 β Γ β + 1 + Θ 4 T β Γ β + 1 g + Ξ 1 η 2 α 1 Γ α + Ξ 2 T α 1 Γ α + Ξ 3 η 1 α Γ α + 1 + Ξ 4 T α Γ α + 1 f + t α Γ α + 1 f .
Hence, by (7) and (8) we have
G 1 x , y Θ l g + Ξ l f ε + Θ g 0 + Ξ f 0 .
On the other hand,
d d t G 1 x , y ( t ) = Θ 1 t I β 1 g ζ 2 + Θ 2 t 0 T I β 1 g s d s + Ξ 1 t I α 1 f η 2 + Ξ 2 t 0 T I α 1 f s d s + 1 Γ α 1 0 t t s α 2 f s , x ( s ) , y ( s ) , D γ y ( s ) d s .
and
d d t G 1 x , y ( t ) Θ 1 ζ 2 β 1 Γ β + Θ 2 T β 1 Γ β g + Ξ 1 η 2 α 1 Γ α + Ξ 2 T α 1 Γ α + T α 1 Γ α f .
It follows that
D σ G 1 x , y ( t ) 0 t t s σ Γ 1 σ d d s G 1 x , y ( s ) d s T 1 σ Γ 2 σ Θ 1 ζ 2 β 1 Γ β + Θ 2 T β 1 Γ β g + T 1 σ Γ 2 σ Ξ 1 η 2 α 1 Γ α + Ξ 2 T α 1 Γ α + T α 1 Γ α f .
Thus by (7)–(10) we obtain
G 1 x , y σ = G 1 x , y + D σ G 1 x , y Θ g + Ξ f Θ l g + Ξ l f ε + Θ g 0 + Ξ f 0 ε 2 .
In similar way we get
G 2 x , y γ = G 2 x , y + D γ G 2 x , y Θ ^ l g + Ξ ^ l f ε + Θ ^ g 0 + Ξ ^ f 0 ε 2 .
From (11) and (12) we get
G 1 x , y σ + G 2 x , y γ ε .
Step 2: Show that G ia a contraction.
Now for x 1 , x 2 , y 1 , y 2 Ω ε , t 0 , T we have
G 1 x 1 , y 1 G 1 x 2 , y 2 σ Θ l g + Ξ l f x 1 x 2 + y 1 y 2 + D γ y 1 D γ y 2 , G 2 x 1 , y 1 G 2 x 2 , y 2 γ Θ ^ l g + Ξ ^ l f x 1 x 2 + y 1 y 2 + D σ x 1 D σ x 2 .
So we obtain
G 1 , G 2 x 1 , y 1 G 1 , G 2 x 2 , y 2 σ × γ Θ l g + Ξ l f + Θ ^ l g + Ξ ^ l f x 1 , y 1 x 2 , y 2 σ × γ ,
which shows that G is a contraction. So, by the Banach fixed point theorem, the operator G 1 , G 2 has a unique fixed point in Ω ε . □
The second result is based on the Leray-Schauder alternative. Now we formulate and prove the second existence result.
Theorem 2.
Let f , g : 0 , T × R 3 R be continuous functions. Assume that
(i) 
there exist a positive real constants θ i , λ i i = 0 , 1 , 2 , 3 such that x i R , i = 1 , 2 , 3
f t , x 1 , x 2 , x 3 θ 0 + θ 1 x 1 + θ 2 x 2 + θ 3 x 3 ,
g t , x 1 , x 2 , x 3 λ 0 + λ 1 x 1 + λ 2 x 2 + λ 3 x 3 .
(ii) 
max A , B < 1 where
A = Θ + Θ ^ λ 1 + Ξ + Ξ ^ max θ 1 , θ 3 , B = Θ + Θ ^ max λ 2 , λ 3 + Ξ + Ξ ^ θ 2 .
Then there exists at least one solution for the problem (1), (2) on 0 , T .
Proof. 
The proof will be divided into several steps.
Step1: We show that G : C σ 0 , T , R × C γ 0 , T , R C σ 0 , T , R × C γ 0 , T , R is completely continuous. The continuity of the operator holds true because of continuity of the function f , g .
Let Ω C σ 0 , T , R × C γ 0 , T , R be bounded. Then there exist k f , k g > 0 such that
f t , x t , y t , D γ y t k f , g t , x t , D σ x t , y t k g , x , y Ω ,
also, from (11) it follows that
G 1 x , y σ = G 1 x , y + D σ G 1 x , y Θ g + Ξ f Θ k g + Ξ k f .
Similarly, we obtain that
G 2 x , y γ = G 2 x , y + D γ G 2 x , y Θ ^ g + Ξ ^ f Θ ^ k g + Ξ ^ k f .
So, from (13) and (14) we conclude that our operator G is uniformly bounded.
Now, let us show that G is equicontinuous. Consider t 1 , t 2 0 , T with t 1 < t 2 . Then we have:
G 1 x , y ( t 2 ) G 1 x , y ( t 1 ) Θ 1 t 1 Θ 1 t 2 I β 1 g ζ 2 + Θ 2 t 1 Θ 2 t 2 0 T I β 1 g s d s + Ξ 1 t 1 Ξ 1 t 2 I α 1 f η 2 + Ξ 2 t 1 Ξ 2 t 1 0 T I α 1 f s d s + 1 Γ α 0 t 1 t 2 s α 1 t 1 s α 1 f d s + + 1 Γ α t 1 t 2 t 2 s α 1 f d s
and
G 1 x , y ( t 2 ) G 1 x , y ( t 1 ) k f Γ α t 2 t 1 α 1 + t 2 α 1 t 1 α 1 .
Thus
D γ G 1 x , y ( t 2 ) D γ G 1 x , y ( t 1 ) = 0 t t s γ Γ 1 γ G 1 x , y t 2 ) G 1 x , y ( t 1 ) d s T 1 γ Γ 2 γ k f Γ α t 2 t 1 α 1 + t 2 α 1 t 1 α 1 ,
which implies that G 1 x , y ( t 2 ) G 1 x , y ( t 1 ) 0 , , independent of x , y as t 2 t 1 . Similarly G 2 x , y ( t 2 ) G 2 x , y ( t 1 ) 0 , independent of x , y as t 2 t 1 .Thus, G x , y is equicontinuous, so by Arzela-Ascoli theorem G x , y is completely continuous.
Step 2: Boundedness of R = x , y C σ 0 , T , R × C γ 0 , T , R : x , y = r G x , y , r 0 , 1 .
Let
x ( t ) = r G 1 x , y ( t ) , y ( t ) = r G 2 x , y ( t ) ,
then
x ( t ) = r G 1 x , y ( t ) .
By using our assumption we can easily get
x σ = r G 1 x , y σ = G 1 x , y + D σ G 1 x , y Θ g + Ξ f Θ λ 0 + λ 1 x + λ 2 y + λ 3 y γ + Ξ θ 0 + θ 1 x + θ 2 y + θ 3 x σ ,
and in similar way, we can have
y γ = r G 2 x , y γ = G 2 x , y + D γ G 2 x , y Θ ^ g + Ξ ^ f Θ ^ λ 0 + λ 1 x + λ 2 y + λ 3 y γ + Ξ ^ θ 0 + θ 1 x + θ 2 y + θ 3 x σ .
So
x σ + y γ Θ + Θ ^ λ 0 + Ξ + Ξ ^ θ 0 + max A , B x , y σ × γ ,
where
x , y σ × γ Θ + Θ ^ λ 0 + Ξ + Ξ ^ θ 0 1 max A , B .
As a result the set R is bounded. So, by Leray-Schauder alternative the operator G has at least one fixed point, which is the solution for the problem (1) with the boundary conditions (2) on 0 , T . □

4. Examples

Example 1.
Consider the following coupled system of fractional differential equation:
c D 6 / 5 x t = e 3 t 12 6400 + t 4 sin x t + cos y t + sin D 1 / 5 y t c D 6 / 5 y t = 1 12 3600 + t 2 cos x t + y t 2 + y t + D 1 / 3 x t 4 + D 1 / 3 x t , t 0 , 1 .
With the integral boundary conditions:
0 1 x s d s = 3 y 1 / 3 , 0 1 x s d s = 2 y 1 / 4 , 0 1 y s d s = x 1 , 0 1 y s d s = 2 x 1 / 2 .
It is clear that
f t , x , y , z = e 3 t 12 6400 + t 4 sin x + cos y + sin z , g t , x , y , z = 1 12 3600 + t 2 cos x + y 2 + y + z 4 + z
are jointly continuous and satisfy the Lipschitz condition with l f = 1 / 320 , l g = 1 / 240 . On the other hand
T = 1 , ρ 1 = 3 , ζ 1 = 1 / 3 , ρ 2 = 2 , ζ 2 = 1 / 4 , μ 1 = 1 , η 1 = 1 , μ 2 = 2 , η 2 = 1 / 2 , γ = 1 / 5 , σ = 1 / 3 ,
and Θ , Ξ , Θ ^ , Ξ ^ can be chosen as follows
Θ = 3.4959 , Ξ = 6.4324 , Θ ^ = 5.1602 , Ξ ^ = 4.6058 .
Then we obtain:
1 2 Θ l g + Ξ l f = 1 0.0693 = 0.9307 > 0 , 1 2 Θ ^ l g + Ξ ^ l f = 1 0.0718 = 0.9282 > 0 .
Obviously, all the condition of Theorem 1 are satisfied so there exists unique solution for this problem.
Example 2.
Consider the following system:
c D 6 / 5 x t = 1 40 + t 3 + y t 115 1 + x 2 t + 1 3 100 + t 2 sin D 1 / 5 y t + 1 3 3600 + t e 3 t sin x t c D 6 / 5 y t = 1 9 + t 2 sin t + 1 180 e 2 t sin y t + 1 150 x t + 1 3 180 + t D 1 / 3 x t , t 0 , 1 ,
with the following boundary conditions:
0 1 x s d s = 3 y 1 / 3 , 0 1 x s d s = 2 y 1 / 4 , 0 1 y s d s = x 1 , 0 1 y s d s = 2 x 1 / 2 ,
T = 1 , ρ 1 = 3 , ζ 1 = 1 / 3 , ρ 2 = 2 , ζ 2 = 1 / 4 , μ 1 = 1 , η 1 = 1 , μ 2 = 2 , η 2 = 1 / 2 , γ = 1 / 5 , σ = 1 / 3 , Θ = 3.4959 , Ξ = 6.4324 , Θ ^ = 5.1602 , Ξ ^ = 4.6058 .
It is clear that:
f t , x 1 , x 2 , x 3 1 40 + 1 180 x 1 + 1 115 x 2 + 1 300 x 3 , g t , x 1 , x 2 , x 3 1 3 + 1 150 x 1 + 1 180 x 2 + 1 540 x 3 .
Thus
θ 0 = 1 / 40 , θ 1 = 1 / 180 , θ 2 = 1 / 115 , θ 3 = 1 / 300 , λ 0 = 1 / 3 , λ 1 = 1 / 150 , λ 2 = 1 / 180 , λ 3 = 1 / 540 .
We found A and B such that: A = 0.1190 , B = 0.1444 and that max A , B = 0.1444 < 1 . Since the conditions of Theorem 2 is achieved. So, there exists a solution for this problem.

5. Conclusions

We studied the existence of solutions for a coupled system of fractional differential equations with integral boundary conditions. The first result was based on the Banach fixed point theorem. Secondly, by using Leray–Schauder’s alternative, we proved the existence of solutions for Caputo fractional equations with integral boundary conditions. Finally, our results are supported by examples.

Author Contributions

The authors have made the same contribution. All authors read and approved the final manuscript.

Funding

This research received no external funding.

Acknowledgments

The authors wish to thank the anonymous reviewers for their valuable comments and suggestions.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Kusnezov, D.; Bulgac, A.; Dang, G.D. Quantum Levy processes and fractional kinetics. Phys. Rev. Lett. 1999, 82, 1136–1139. [Google Scholar] [CrossRef]
  2. Jiao, Z.; Chen, Y.Q.; Podlubny, I. Distributed-Order Dynamic Systems; Springer: New York, NY, USA, 2012. [Google Scholar]
  3. Hartley, T.T.; Lorenzo, C.F.; Killory, Q.H. Chaos in a fractional order Chua’s system. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1995, 42, 485–490. [Google Scholar] [CrossRef]
  4. Arena, P.; Caponetto, R.; Fortuna, L.; Porto, D. Chaos in a fractional order Duffing system. In Proceedings of the 1997 European Conference on Circuit the Ory and Design (ECCTD97), Budapest, Hungary, 30 August–3 September 1997; Technical University of Budapest: Budapest, Hungary, 1997; pp. 1259–1262. [Google Scholar]
  5. Grigorenko, I.; Grigorenko, E. Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 2003, 91, 034101. [Google Scholar] [CrossRef] [PubMed]
  6. Metzler, R.; Klafter, J. The random walks guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
  7. Sokolov, I.M.; Klafter, J.; Blumen, A. Fractional kinetics. Phys. Today 2002, 55, 48–54. [Google Scholar] [CrossRef]
  8. Ostoja-Starzewski, M. Towards thermoelasticity of fractal media. J. Therm. Stress 2007, 30, 889–896. [Google Scholar] [CrossRef]
  9. Povstenko, Y.Z. Fractional Thermoelasticity; Springer: New York, NY, USA, 2015. [Google Scholar]
  10. Matignon, D. Stability results for fractional differential equations with applications to control processing. In Proceedings of the International IMACS IEEE-SMC Multi Conference on Computational Engineering in Systems Applications, Lille, France, 9–12 July 1996; GERF, Ecole Centrale de Lille: Lille, France, 1996; pp. 963–968. [Google Scholar]
  11. Ge, Z.M.; Jhuang, W.R. Chaos, control and synchronization of a fractional order rotational mechanical system with a centrifugal governor. Chaos Solitons Fractals 2007, 33, 270–289. [Google Scholar] [CrossRef]
  12. Ge, Z.M.; Ou, C.Y. Chaos synchronization of fractional order modified Duffing systems with parameters excited by a chaotic signal. Chaos Solitons Fractals 2008, 35, 705–717. [Google Scholar] [CrossRef]
  13. Faieghi, M.; Kuntanapreeda, S.; Delavari, H.; Baleanu, D. LMI-based stabilization of a class of fractional-order chaotic systems. Nonlinear Dyn. 2013, 72, 301–309. [Google Scholar] [CrossRef]
  14. Zhang, F.; Chen, G.; Li, C.; Kurths, J. Chaos synchronization in fractional differential systems. Philos. Trans. R. Soc. A 2013, 371, 20120155. [Google Scholar] [CrossRef]
  15. Ahmad, B.; Alsaedi, A.; Alghamdi, B.S. Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions. Nonlinear Anal. Real World Appl. 2008, 9, 1727–1740. [Google Scholar] [CrossRef]
  16. Ciegis, R.; Bugajev, A. Numerical approximation of one model of the bacterial self-organization. Nonlinear Anal. Model. Control 2012, 17, 253–270. [Google Scholar]
  17. Sun, J.; Liu, Y.; Liu, G. Existence of solutions for fractional differential systems with antiperiodic boundary conditions. Comput. Math. Appl. 2012, 64, 1557–1566. [Google Scholar] [CrossRef] [Green Version]
  18. Senol, B.; Yeroglu, C. Frequency boundary of fractional order systems with nonlinear uncertainties. J. Frankl. Inst. 2013, 350, 1908–1925. [Google Scholar] [CrossRef]
  19. Ahmad, B.; Ntouyas, S.K. A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations. Fract. Calc. Appl. Anal. 2014, 17, 348–360. [Google Scholar] [CrossRef] [Green Version]
  20. Kirane, M.; Ahmad, B.; Alsaedi, A.; Al-Yami, M. Non-existence of global solutions to a system of fractional diffusion equations. Acta Appl. Math. 2014, 133, 235–248. [Google Scholar] [CrossRef]
  21. Ahmad, B.; Ntouyas, S.K. Existence results for a coupled system of Caputo type sequential fractional differential equations with nonlocal integral boundary conditions. Appl. Math. Comput. 2015, 266, 615–622. [Google Scholar] [CrossRef]
  22. Henderson, J.; Luca, R. Nonexistence of positive solutions for a system of coupled fractional boundary value problems. Bound. Value Probl. 2015, 2015, 138. [Google Scholar] [CrossRef] [Green Version]
  23. Henderson, J.; Luca, R.; Tudorache, A. On a system of fractional differential equations with coupled integral boundary conditions. Fract. Calc. Appl. Anal. 2015, 18, 361–386. [Google Scholar] [CrossRef]
  24. Fazli, H.; Nieto, J.J.; Bahrami, F. On the existence and uniqueness results for nonlinear sequential fractional differential equations. Appl. Comput. Math. 2018, 17, 36–47. [Google Scholar]
  25. Wang, J.R.; Zhang, Y. Analysis of fractional order differential coupled systems. Math. Methods Appl. Sci. 2015, 38, 3322–3338. [Google Scholar] [CrossRef]
  26. Ahmad, B.; Ntouyas, S.K.; Alsaedi, A. On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions. Chaos Solitons Fractals 2016, 83, 234–241. [Google Scholar] [CrossRef]
  27. Ahmad, B.; Nieto, J.J. Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 2009, 58, 1838–1843. [Google Scholar] [CrossRef] [Green Version]
  28. Su, X. Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett. 2009, 22, 64–69. [Google Scholar] [CrossRef] [Green Version]
  29. Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
  30. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies, 204; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]

Share and Cite

MDPI and ACS Style

Mahmudov, N.I.; Bawaneh, S.; Al-Khateeb, A. On a Coupled System of Fractional Differential Equations with Four Point Integral Boundary Conditions. Mathematics 2019, 7, 279. https://doi.org/10.3390/math7030279

AMA Style

Mahmudov NI, Bawaneh S, Al-Khateeb A. On a Coupled System of Fractional Differential Equations with Four Point Integral Boundary Conditions. Mathematics. 2019; 7(3):279. https://doi.org/10.3390/math7030279

Chicago/Turabian Style

Mahmudov, Nazim I, Sameer Bawaneh, and Areen Al-Khateeb. 2019. "On a Coupled System of Fractional Differential Equations with Four Point Integral Boundary Conditions" Mathematics 7, no. 3: 279. https://doi.org/10.3390/math7030279

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop