Some Characterizations of Semi-Invariant Submanifolds of Golden Riemannian Manifolds
Abstract
:1. Introduction
2. Preliminaries
3. Characterizations of Semi-Invariant Submanifolds
- (a)
- ,
- (b)
- (a)
- is a -invariant distribution,
- (b)
- is a -anti-invariant distribution.
Author Contributions
Funding
Conflicts of Interest
References
- Bejancu, A. CR Submanifolds of a Kaehler Manifold. I. Proc. Am. Math. Soc. 1978, 69, 135–142. [Google Scholar] [CrossRef]
- Bejancu, A.; Papaghiuc, N. Semi-Invariant Submanifolds of a Sasakian Manifold. An. Ştint. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 1981, 27, 163–170. [Google Scholar]
- Papaghiuc, N. Semi-Invariant Submanifolds in a Kenmotsu Manifold. Rend. Mat. 1983, 3, 607–622. [Google Scholar]
- Bejancu, A. Semi-Invariant Submanifolds of Locally Riemannian Product Manifolds. Ann. Univ. Timisoara S. Math. 1984, 22, 3–11. [Google Scholar]
- Bejancu, A.; Papaghiuc, N. Semi-Invariant Submanifolds of a Sasakian Space Form. Colloq. Math. 1984, 48, 77–88. [Google Scholar] [CrossRef] [Green Version]
- Bejan, C.L. Almost Semi-Invariant Submanifolds of a Cosymplectic Manifold. An. Ştint. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 1985, 31, 149–156. [Google Scholar]
- Cabras, A.; Matzeu, P. Almost Semi-Invariant Submanifolds of a Cosymplectic Manifold. Demonstratio Math. 1986, 19, 395–401. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, M. Semi-Invariant Submanifolds of a Certain Class of Almost Contact Manifolds. Tensor (N.S.) 1986, 43, 28–36. [Google Scholar]
- Matsumoto, K.; Shahid, M.H.; Mihai, I. Semi-Invariant Submanifolds of Certain Almost Contact Manifolds. Bull. Yamagata Univ. Nat. Sci. 1994, 13, 183–192. [Google Scholar]
- Shahid, M.H. On Semi-Invariant Submanifolds of a Nearly Sasakian Manifold. Indian J. Pure Appl. Math. 1993, 24, 571–580. [Google Scholar]
- Prasad, B. Semi-Invariant Submanifolds of a Lorentzian Para-Sasakian Manifold. Bull. Malaysian Math. Soc. 1998, 21, 21–26. [Google Scholar]
- Kim, S.J.; Lin, X.; Tripathi, M.M. On Semi-Invariant Submanifolds of Nearly Trans-Sasakian Manifolds. Int. J. Pure Appl. Math. 2004, 1, 15–34. [Google Scholar]
- Alegre, P. Semi-Invariant Submanifolds of Lorentzian Sasakian Manifolds. Demonstratio Math. 2011, 44, 391–406. [Google Scholar] [CrossRef] [Green Version]
- Crâşmăreanu, M.C.; Hreţcanu, C.E. Golden Differential Geometry. Chaos Soliton. Fract. 2008, 38, 1229–1238. [Google Scholar] [CrossRef]
- Hreţcanu, C.E.; Crâşmăreanu, M.C. On Some Invariant Submanifolds in a Riemannian Manifold with Golden Structure. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 2007, 53, 199–211. [Google Scholar]
- Hreţcanu, C.E.; Crâşmăreanu, M.C. Applications of the Golden Ratio on Riemannian Manifolds. Turk. J. Math. 2009, 33, 179–191. [Google Scholar]
- Blaga, A.M.; Hreţcanu, C.E. Invariant, Anti-Invariant and Slant Submanifolds of a Metallic Riemannian Manifold. Novi Sad J. Math. 2018, 48, 55–80. [Google Scholar] [CrossRef]
- Hreţcanu, C.E.; Blaga, A.M. Slant and Semi-Slant Submanifolds in Metallic Riemannian Manifolds. J. Funct. Spaces 2018, 2018, 2864263. [Google Scholar] [CrossRef]
- Hreţcanu, C.E.; Blaga, A.M. Hemi-Slant Submanifolds in Metallic Riemannian Manifolds. Carpathian J. Math. 2019, 35, 59–68. [Google Scholar]
- Erdoğan, F.E.; Yıldırım, C. On a Study of the Totally Umbilical Semi-Invariant Submanifolds of Golden Riemannian Manifolds. J. Polytechnic 2018, 21, 967–970. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, S.I.; Yano, K. Polynomial Structures on Manifolds. Kodai Math. Sem. Rep. 1970, 22, 199–218. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gök, M.; Keleş, S.; Kılıç, E. Some Characterizations of Semi-Invariant Submanifolds of Golden Riemannian Manifolds. Mathematics 2019, 7, 1209. https://doi.org/10.3390/math7121209
Gök M, Keleş S, Kılıç E. Some Characterizations of Semi-Invariant Submanifolds of Golden Riemannian Manifolds. Mathematics. 2019; 7(12):1209. https://doi.org/10.3390/math7121209
Chicago/Turabian StyleGök, Mustafa, Sadık Keleş, and Erol Kılıç. 2019. "Some Characterizations of Semi-Invariant Submanifolds of Golden Riemannian Manifolds" Mathematics 7, no. 12: 1209. https://doi.org/10.3390/math7121209
APA StyleGök, M., Keleş, S., & Kılıç, E. (2019). Some Characterizations of Semi-Invariant Submanifolds of Golden Riemannian Manifolds. Mathematics, 7(12), 1209. https://doi.org/10.3390/math7121209