A Comparison of Methods for Determining the Time Step When Propagating with the Lanczos Algorithm
Abstract
1. Introduction
2. Comparing the Derivations
2.1. Common Starting Point
2.2. Lubich Derivation
2.3. Mohankumar–Carrington Derivation
3. Test Calculations for Real-Time Propagation
4. Imaginary Time Propagation
4.1. An Error Bound from a Geometric Series
4.2. An Error Bound from the First Term in Equation (27)
4.3. Test Calculations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Park, T.J.; Light, J.C. Light, Unitary quantum time evolution by iterative Lanczos reduction. J. Chem. Phys. 1986, 85, 5870. [Google Scholar] [CrossRef]
- Schinke, R. Photodissociation Dynamics; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Wyatt, R.E.; Zhang, J.Z.H. (Eds.) Dynamics of Molecules and Chemical Reaction; Marcel Dekker: New York, NY, USA, 1996. [Google Scholar]
- Gray, S.K.; Balint-Kurti, G.G. Quantum dynamics with real wave packets, including applica- tion to three-dimensional (J=0)D+H2→HD+H(J=0)D+H2→HD+H reactive scattering. J. Chem. Phys. 1998, 108, 950. [Google Scholar] [CrossRef]
- Park, T.J.; Light, J.C. Quantum flux operators and thermal rate constant: Collinear H+H2. J. Chem. Phys. 1988, 88, 4897. [Google Scholar] [CrossRef]
- Wei, H.; Carrington, T. A time-dependent calculation of the alignment and orientation of the CN fragment of the photodissociation of ICN. J. Chem. Phys. 1996, 105, 141. [Google Scholar] [CrossRef]
- Miller, S.M.; Carrington, T. Calculation of reaction probabilities using wavepackets. Chem. Phys. Lett. 1997, 267, 417. [Google Scholar] [CrossRef]
- Mohankumar, N.; Carrington, T., Jr. A new approach for determining the time step when propagating with the Lanczos algorithm. Comput. Phys. Commun. 2010, 181, 1859. [Google Scholar] [CrossRef]
- Lubich, C. From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis; European Mathematical Society: Zurich, Switzerland, 2008. [Google Scholar]
- Hochbruck, M.; Lubich, C.; Selhofer, H. Exponential integrators for large systems of differential equations. SIAM J. Sci. Comput. 1998, 19, 1552. [Google Scholar] [CrossRef]
- Hochbruck, M.; Lubich, C. On Krylov Subspace Approximations to the Matrix Exponential Operator. SIAM J. Numer. Anal. 1997, 34, 1911. [Google Scholar] [CrossRef]
- Stewart, D.E.; Leyk, T.S. Error estimates for Krylov subspace approximations of matrix expo-nentials. J. Comput. Appl. Math. 1996, 72, 359. [Google Scholar] [CrossRef][Green Version]
- Tal-Ezer, H.; Kosloff, R. An accurate and efficient scheme for propagating the time dependent Schrdinger equation. J. Chem. Phys. 1984, 81, 3967. [Google Scholar] [CrossRef]
- Schiff, L.I. Quantum Mechanics, 3rd ed.; McGraw-Hill: New York, NY, USA, 1968; p. 74. [Google Scholar]
- Colbert, D.; Miller, W.H. A novel discrete variable representation for quantum mechanical reactive scattering via the S-matrix Kohn method. J. Chem. Phys. 1992, 96, 1982. [Google Scholar] [CrossRef]
- Kosloff, R.; Tal-Ezer, H. A direct relaxation method for calculating eigenfunctions and eigenvalues of the schrdinger equation on a grid. Chem. Phys. Lett. 1986, 127, 223–230. [Google Scholar] [CrossRef]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. (Eds.) Integrals and Series; Gordon and Breach: New York, NY, USA, 1992; Volume 2, p. 453. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions; Dover: New York, NY, USA, 1965. [Google Scholar]
- Robbins, H. A Remark on Stirling’s Formula. Am. Math. Mon. 1955, 62, 26. [Google Scholar] [CrossRef]
Time-Step | 689.11 | 661.6 | 566.49 | 526.1 | 463.57 | 421.5 | 378.35 | 339.3 |
Iterations | 200 | 208 | 200 | 215 | 200 | 220 | 200 | 220 |
12 | 1.298 × 10 | 1.081 × 10 | 4.925 × 10 | 2.029 × 10 | 2.319 × 10 | 3.604 × 10 | 3.287 × 10 | 7.618 × 10 |
23 | 1.149 × 10 | 4.520 × 10 | 3.644 × 10 | 6.550 × 10 | 3.314 × 10 | 2.538 × 10 | 8.968 × 10 | 1.617 × 10 |
58 | 4.238 × 10 | 3.929 × 10 | 6.506 × 10 | 1.114 × 10 | 2.821 × 10 | 5.802 × 10 | 4.718 × 10 | 1.077 × 10 |
89 | 6.756 × 10 | 1.854 × 10 | 2.126 × 10 | 1.396 × 10 | 7.604 × 10 | 2.442 × 10 | 7.601 × 10 | 1.121 × 10 |
120 | 9.161 × 10 | 3.006 × 10 | 4.231 × 10 | 8.909 × 10 | 1.044 × 10 | 1.852 × 10 | 5.667 × 10 | 1.712 × 10 |
200 | 4.398 × 10 | 2.536 × 10 | 3.462 × 10 | 3.918 × 10 | 9.433 × 10 | 1.276 × 10 | 1.619 × 10 | 1.741 × 10 |
400 | 1.931 × 10 | 5.332 × 10 | 3.017 × 10 | 3.502 × 10 | 1.824 × 10 | 2.030 × 10 | 9.238 × 10 | 1.605 × 10 |
Percentage Increase | |||
---|---|---|---|
1 × 10 | 6.891 × 10 | 6.616 × 10 | 4.15 |
1 × 10 | 5.665 × 10 | 5.261 × 10 | 7.68 |
1 × 10 | 4.632 × 10 | 4.215 × 10 | 9.97 |
1 × 10 | 3.784 × 10 | 3.393 × 10 | 11.5 |
1 × 10 | 3.083 × 10 | 2.739 × 10 | 12.6 |
1 × 10 | 2.509 × 10 | 2.214 × 10 | 13.3 |
n | m | c | Err | Equation (33) | Equation (32) | SL Error |
---|---|---|---|---|---|---|
100 | 12 | 8 | 9.848 × 10 | 3.125 × 10 | 4.243 × 10 | × 10 |
100 | 22 | 8 | 6.149 × 10 | 1.196 × 10 | 1.341 × 10 | 3.545 × 10 |
100 | 22 | 18 | 1.484 × 10 | 9.009 × 10 | 8.576 × 10 | 1.437 × 10 |
200 | 12 | 6 | 7.919 × 10 | 2.357 × 10 | 3.027 × 10 | 1.848 × 10 |
200 | 20 | 8 | 4.160 × 10 | 1.404 × 10 | 1.602 × 10 | 3.545 × 10 |
200 | 20 | 40 | 2.594 × 10 | 9.672 × 10 | --- | 2.476 × 10 |
400 | 12 | 5 | 1.213 × 10 | 4.136 × 10 | 5.155 × 10 | 4.219 × 10 |
400 | 20 | 5 | 2.685 × 10 | 4.638 × 10 | 5.209 × 10 | 4.219 × 10 |
1200 | 100 | 20 | 1.751 × 10 | 7.231 × 10 | 6.541 × 10 | 1.766 × 10 |
1200 | 100 | 40 | 2.842 × 10 | 8.706 × 10 | 4.467 × 10 | 1.191 × 10 |
4000 | 12 | 15 | 1.224 × 10 | 3.731 × 10 | 8.790 × 10 | 2.094 × 10 |
4000 | 32 | 15 | 4.078 × 10 | 1.105 × 10 | 1.064 × 10 | 1.096 × 10 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohankumar, N.; Carrington, T. A Comparison of Methods for Determining the Time Step When Propagating with the Lanczos Algorithm. Mathematics 2019, 7, 1109. https://doi.org/10.3390/math7111109
Mohankumar N, Carrington T. A Comparison of Methods for Determining the Time Step When Propagating with the Lanczos Algorithm. Mathematics. 2019; 7(11):1109. https://doi.org/10.3390/math7111109
Chicago/Turabian StyleMohankumar, N., and Tucker Carrington. 2019. "A Comparison of Methods for Determining the Time Step When Propagating with the Lanczos Algorithm" Mathematics 7, no. 11: 1109. https://doi.org/10.3390/math7111109
APA StyleMohankumar, N., & Carrington, T. (2019). A Comparison of Methods for Determining the Time Step When Propagating with the Lanczos Algorithm. Mathematics, 7(11), 1109. https://doi.org/10.3390/math7111109