A Solution to Qi’s Conjecture on a Double Inequality for a Function Involving the Tri- and Tetra-Gamma Functions
Abstract
:1. Introduction
2. The Key Lemmas
- (a)
- (b)
- (c)
- ,
- for
- for
3. Proof of the Main Result
4. Materials and Methods
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Yang, Z.-H.; Qian, W.-M.; Chu, Y.-M.; Zhang, W. On rational bounds for the gamma function. J. Inequal. Appl. 2017, 2017. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Chu, Y.M.; Jiang, Y.P. Monotonic and logarithmically convex properties of a function involving gamma functions. J. Inequal. Appl. 2009, 2009. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Chu, Y.-M.; Zhang, X.-H. Sharp bounds for psi function. Appl. Math. Comput. 2015, 268, 1055–1063. [Google Scholar] [CrossRef]
- Andrews, G.-E.; Askey, R.; Roy, R. Special Functions; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Qi, F.; Agarwal, R.P. On complete monotonicity for several classes of functions related to ratios of gamma functions. J. Inequal. Appl. 2019, 2019. [Google Scholar] [CrossRef]
- Qi, F. Complete monotonicity of a function involving the tri- and tetra-gamma functions. Proc. Jangjeon Math. Soc. 2015, 2, 235–264. [Google Scholar] [CrossRef]
- Cartier, P. An Introduction to Zeta Functions; Waldschmidt, M., Moussa, P., Luck, J.M., Itzykson, C., Eds.; From Number Theory to Physics; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar] [CrossRef]
- Qi, F.; Mortici, C. Some inequalities for the trigamma function in terms of the digamma function. Appl. Math. Comput. 2015, 271, 502–511. [Google Scholar] [CrossRef]
- Guo, B.-N.; Chen, R.J.; Qi, F. A class of completely monotonic functions involving the polygamma functions. J. Math. Anal. Approx. Theory 2006, 1, 123–134. [Google Scholar] [CrossRef]
- English, B.J.; Rousseau, G. Bound for certain harmonic sums. J. Math. Anal. Appl. 1997, 206, 428–441. [Google Scholar] [CrossRef]
- Qi, F.; Guo, B.-N. Sharp inequalities for polygamma functions. Math. Slovaca 2015, 65, 103–120. [Google Scholar] [CrossRef]
- Janson, S. Roots of polynomials of degree 3 and 4. arXiv 2010, arXiv:1009.2373v1. [Google Scholar]
- Rees, E.L. Graphical discussion of the roots of a quartic equation. Am. Math. Mon. 1922, 29, 51–55. Available online: https://www.jstor.org/stable/pdf/2972804.pdf (accessed on 10 September 2019). [CrossRef]
- Jarník, V. Diferenciální Počet I; Academi: San Francisco, CA, USA, 1974; Available online: http://matematika.cuni.cz/jarnik-all.html (accessed on 10 September 2019).
Points | Values of |
---|---|
−330,000 | ≈ |
−320,000 | ≈ |
≈ | |
≈ |
Points | Values of |
---|---|
≈ | |
≈ | |
1 | −215,721,480 |
≈ |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matejíčka, L. A Solution to Qi’s Conjecture on a Double Inequality for a Function Involving the Tri- and Tetra-Gamma Functions. Mathematics 2019, 7, 1098. https://doi.org/10.3390/math7111098
Matejíčka L. A Solution to Qi’s Conjecture on a Double Inequality for a Function Involving the Tri- and Tetra-Gamma Functions. Mathematics. 2019; 7(11):1098. https://doi.org/10.3390/math7111098
Chicago/Turabian StyleMatejíčka, Ladislav. 2019. "A Solution to Qi’s Conjecture on a Double Inequality for a Function Involving the Tri- and Tetra-Gamma Functions" Mathematics 7, no. 11: 1098. https://doi.org/10.3390/math7111098
APA StyleMatejíčka, L. (2019). A Solution to Qi’s Conjecture on a Double Inequality for a Function Involving the Tri- and Tetra-Gamma Functions. Mathematics, 7(11), 1098. https://doi.org/10.3390/math7111098