Global Existence of Strong Solutions for Beris–Edwards’s Liquid Crystal System in Dimension Three
Abstract
1. Introduction
2. Preliminaries and the Main Result
3. Global Existence of Strong Solutions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Beris, A.N.; Edwards, B.J. Thermodynamics of Flowing Systems with Internal Microstructure; Oxford Engineering Science Series 36; Oxford University Press: Oxford, UK; New York, NY, USA, 1994. [Google Scholar]
- Qian, T.; Sheng, P. Generalized hydrodynamic equations for nematic liquid crystals. Phys. Rev. E 1998, 58, 7475–7485. [Google Scholar] [CrossRef]
- Ericksen, J. Conservation laws for liquid crystals. Trans. Soc. Rheol. 1961, 5, 22–34. [Google Scholar] [CrossRef]
- Leslie, F.M. Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 1968, 28, 265–283. [Google Scholar] [CrossRef]
- De Gennes, P.G. The Physics of Liquid Crystals; Clarendon Press: Oxford, UK, 1974. [Google Scholar]
- Mottram, N.J.; Newton, C. Introduction to Q-Tensor Theory. arXiv 2014, arXiv:1409.3542. [Google Scholar]
- Ball, J.M.; Majumdar, A. Nematic Liquid Crystals: From Maier-Saupe to a Continuum Theory. Mol. Cryst. Liq. Cryst. 2010, 525, 1–11. [Google Scholar] [CrossRef]
- Majumdar, A.; Zarnescu, A. Landau-De Gennes theory of nematic liquid crystals: The Oseen-Frank limit and beyond. Arch. Ration. Mech. Anal. 2010, 196, 227–280. [Google Scholar] [CrossRef]
- Abels, H.; Dolzmann, G.; Liu, Y. Strong solutions for the Beris–Edwards model for nematic liquid crystals with homogeneous Dirichilet boundary conditions. Adv. Differ. Equ. 2016, 21, 109–152. [Google Scholar]
- Temann, R. Navier–Stokes Equations, rev. ed.; Studies in Mathematics and its Applications 2; North-Holland: Amsterdam, The Netherlands, 1977. [Google Scholar]
- Denniston, C.; Orlandini, E.; Yeomans, J.M. Lattice Boltzmann simulations of liquid crystals hydrodynamics. Phys. Rev. E 2001, 63, 056702. [Google Scholar] [CrossRef]
- Paicu, M.; Zarnescu, A. Energy dissipation and regularity for a coupled Navier–Stokes and Q-tensor system. Arch. Ration. Mech. Anal. 2012, 203, 45–67. [Google Scholar] [CrossRef]
- Paicu, M.; Zarnescu, A. Global existence and regularity for the full coupled Navier–Stokes and Q-tensor system. SIAM J. Math. Anal. 2011, 43, 2009–2049. [Google Scholar] [CrossRef]
- Dai, M.; Feireisl, E.; Rocca, E.; Schimperna, G.; Schonbek, M. On asymptotic isotropy for a hydrodynamic model of liquid crystals. Asymptot. Anal. 2016, 97, 189–210. [Google Scholar] [CrossRef]
- De Anna, F. A global 2D well-posedness result on the order tensor liquid crystal theory. J. Differ. Equ. 2017, 262, 3932–3979. [Google Scholar] [CrossRef]
- De Anna, F.; Zarnescu, A. Uniqueness of Weak Solutions of the Full Coupled Navier–Stokes and Q-Tensor System in 2D. Commun. Math. Sci. 2016, 14, 2127–2178. [Google Scholar] [CrossRef]
- Huang, J.; Ding, S. Global well-posedness for the dynamical Q-tensor model of liquid crystals. Sci. China Math. 2015, 58, 1349–1366. [Google Scholar] [CrossRef]
- Abels, H.; Dolzmann, G.; Liu, Y. Well-posedness of a fully-coupled Navier–Stokes/Q-tensor system with inhomogeneous boundary data. SIAM J. Math. Anal. 2014, 46, 3050–3077. [Google Scholar] [CrossRef]
- Guillén-González, F.; RodrÍguez-Bellido, M.A. Weak time regularity and uniqueness for a Q-tensor model. SIAM J. Math. Anal. 2014, 46, 3540–3567. [Google Scholar]
- Guillén-González, F.; RodrÍguez-Bellido, M.A. Weak solutions for an initial-boundary Q-tensor problem related to liquid crystals. Nonlinear Anal. 2015, 112, 84–104. [Google Scholar]
- Liu, Y.; Wang, W. On the initial boundary value problem of a Navier–Stokes/Q-tensor model for liquid crystals. Discret. Contin. Dyn. Syst. Ser. B 2018, 23, 3879–3899. [Google Scholar] [CrossRef]
- Wilkinson, M. Strictly physical global weak solutions of a Navier–Stokes Q-tensor system with singular potential. Arch. Ration. Mech. Anal. 2015, 218, 487–526. [Google Scholar] [CrossRef]
- Cavaterra, C.; Rocca, E.; Wu, H.; Xu, X. Global strong solutions of the full Navier–Stokes and Q-tensor system for nematic liquid crystal flows in two dimensions. SIAM J. Math. Anal. 2016, 48, 1368–1399. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Q. Semi-discrete energy-stable schemes for a tensor-based hydrodynamic model of nematic liquid crystal flows. J. Sci. Comput. 2016, 68, 1241–1266. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, X.F.; Gong, Y.Z.; Wang, Q. A novel linear second order unconditionally energy stable scheme for a hydrodynamic Q-tensor model of liquid crystals. Comput. Methods Appl. Mech. Eng. 2017, 318, 803–825. [Google Scholar] [CrossRef]
- Ladyzhenskaya, O.A. The Mathematical Theroy of Viscous Incompressible Flow; Gordon and Breach: New York, NY, USA, 1969. [Google Scholar]
- Serrin, J. The initial value problem for Navier–Stokes equations. In Nonlinear Problems; Langer, R., Ed.; University of Wisconsin Press: Madison, WI, USA, 1963; pp. 69–98. [Google Scholar]
- Ladyzhenskaya, O.A.; Solonnikov, N.A.; Uroltseva, N.N. Linear and Quasilinear Equations of Parabolic Type. In Translations of Mathematical Monographs; American Mathematical Society: Providence, RI, USA, 1968; Volume 23. [Google Scholar]
- Lin, F.-H.; Liu, C. Nonparabolic dissipative system modeling the flow of liquid crystals. Commun. Pure Appl. Math. 1995, XLVIII, 501–537. [Google Scholar] [CrossRef]
- Lin, F.-H.; Liu, C. Existence of Solutions for the Ericksen-Leslie System. Arch. Ration. Mech. Anal. 2000, 154, 135–156. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Li, S.; Zhao, F. Global Existence of Strong Solutions for Beris–Edwards’s Liquid Crystal System in Dimension Three. Mathematics 2019, 7, 972. https://doi.org/10.3390/math7100972
Luo Y, Li S, Zhao F. Global Existence of Strong Solutions for Beris–Edwards’s Liquid Crystal System in Dimension Three. Mathematics. 2019; 7(10):972. https://doi.org/10.3390/math7100972
Chicago/Turabian StyleLuo, Yongshun, Sirui Li, and Fangxin Zhao. 2019. "Global Existence of Strong Solutions for Beris–Edwards’s Liquid Crystal System in Dimension Three" Mathematics 7, no. 10: 972. https://doi.org/10.3390/math7100972
APA StyleLuo, Y., Li, S., & Zhao, F. (2019). Global Existence of Strong Solutions for Beris–Edwards’s Liquid Crystal System in Dimension Three. Mathematics, 7(10), 972. https://doi.org/10.3390/math7100972