A Class of Nonlinear Fuzzy Variational Inequality Problems
Abstract
1. Introduction
2. Preliminaries
2.1. Fuzzy Set Theory
- (1)
- normality, ,
- (2)
- monotonicity, ,
- (3)
- for , we have .
- (1)
- (2)
2.2. Approximation Method
3. The Property of
- (1)
- there exists an integrable function and a neighborhood of satisfying
- (2)
- is semi-smooth at for ;
- (3)
- there exist an integrable function and a neighborhood of satisfying
- (1)
- there exist an integrable function , such that , satisfying
- (2)
- For , is function on . There is nonnegative function such that , satisfying is Lipschitz continuous,
- (3)
- There exists an integrable function and of satisfyingwhere , and ∇ represents gradient.
4. Convergence of the FERM Model
4.1. Convergence of Global Optimal Solutions
4.2. Convergence of Stationary Points
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zadeh, L.-A. Fuzzy sets. Inform. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Dubois, D.; Prade, H. The mean value of a fuzzy number. Fuzzy Sets Syst. 1987, 24, 279–300. [Google Scholar] [CrossRef]
- Dubois, D.; Prade, H. Fussy Sets and Systems; Academic Press: Cambridge, MA, USA, 1980. [Google Scholar]
- Dubois, D.; Prade, H. Possibility Theory: Qualitative and Quantitative Aspects. Quantified Representation of Uncertainty and Imprecision; Springer: Dordrecht, The Netherlands, 1998; pp. 169–226. [Google Scholar]
- Cho, S.-Y.; Qin, X.; Yao, J.-C.; Yao, Y. Viscosity approximation splitting methods for monotone and nonexpansive operators in Hilbert spaces. J. Nonlinear Convex Anal. 2018, 19, 251–264. [Google Scholar]
- Dubois, D.; Prade, H. Comment on tolerance analysis using fuzzy sets and a procedure for multiple aspect decision making. Internat. J. Syst. Sci. 1978, 9, 357–360. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, R.; Xu, H.-K. Schemes for finding minimum-norm solutions of variational inequalities. Nonlinear Anal. 2010, 72, 3447–3456. [Google Scholar] [CrossRef]
- Yao, Y.; Liou, Y.-C.; Kang, S.-M. Approach to common elements of variational inequality problems and fixed point problems via a relaxed extragradient method. Comput. Math. Appl. 2010, 59, 3472–3480. [Google Scholar] [CrossRef]
- Dubois, D.; Prade, H. Additions of interactive fuzzy numbers. IEEE Trans. Autom. Control 1981, 26, 926–936. [Google Scholar] [CrossRef]
- Yao, Y.; Shahzad, N. Strong convergence of a proximal point algorithm with general errors. Optim. Lett. 2012, 6, 621–628. [Google Scholar] [CrossRef]
- Yao, Y.-H.; Postolache, M.; Liou, Y.-C. Strong convergence of a self-adaptive method for the split feasibility problem. Fixed Point Theory Appl. 2013, 2013, 201. [Google Scholar] [CrossRef]
- Dong, Q.-L.; Cho, Y.-J.; Rassias, T.-M. The projection and contraction methods for finding common solutions to variational inequality problems. Optim. Lett. 2018, 12, 1871–1896. [Google Scholar] [CrossRef]
- Li, C.-L.; Jia, Z.-F. Expected residual minimization method for uncertain variational inequality problems. J. Nonlinear Sci. Appl. 2017, 10, 5958–5975. [Google Scholar] [CrossRef]
- Chang, S.-S.; Zhu, Y.-G. On variational inequalities for fuzzy mappings. Fuzzy Sets Syst. 1989, 32, 359–367. [Google Scholar] [CrossRef]
- Huang, N.-J. Random generalized nonlinear variational inclusions for random fuzzy mappings. Fuzzy Sets Syst. 1999, 105, 437–444. [Google Scholar] [CrossRef]
- Yao, Y.-H.; Liou, Y.C.; Yao, J.-C. Iterative algorithms for the split variational inequality and fixed point problems under nonlinear transformations. J. Nonlinear Sci. Appl. 2017, 10, 843–854. [Google Scholar] [CrossRef]
- Lee, B.S.; Lee, G.M.; Cho, S.J.; Kim, D.S. A variational inequality for fuzzy mappings. In Proceedings of the Fifth Fuzzy Systems Association World Congress, Seoul, Korea, 4–9 July 1993; pp. 326–329. [Google Scholar]
- Inuiguchi, M.; Ichihashi, H.; Kume, Y. A solution algorithm for fuzzy linear programming with piecewise linear membership functions. Fuzzy Sets Syst. 1990, 34, 15–31. [Google Scholar] [CrossRef]
- Hu, C.-F.; Fang, S.-C. Solving fuzzy inequalities with concave membership functions. Fuzzy Sets Syst. 1998, 99, 233–240. [Google Scholar] [CrossRef]
- Fang, S.-C.; Hu, C.-F. Solving fuzzy variational inequalities. Fuzzy Optim. Decis. Mak. 2002, 1, 113–133. [Google Scholar] [CrossRef]
- Hu, C.-F. Solving Systems of Fuzzy Inequalities. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 1997. [Google Scholar]
- Hu, C.-F. Solving variational inequalities in a fuzzy environment. J. Math. Anal. Appl. 2000, 249, 527–538. [Google Scholar] [CrossRef]
- Wang, H.-F.; Liao, H.-L. Variational inequality with fuzzy convex cone. J. Glob. Optim. 1999, 14, 395–414. [Google Scholar] [CrossRef]
- Wang, H.-F.; Liao, H.-L. Fuzzy resolution on the infeasibility of variational inequality. Eur. J. Oper. Res. 1998, 106, 198–203. [Google Scholar] [CrossRef]
- Huang, N.-J. A new method for a class of nonlinear variational inequalities with fuzzy mappings. Appl. Math. Lett. 1997, 10, 129–133. [Google Scholar] [CrossRef]
- Yao, Y.; Yao, J.-C.; Liou, Y.-C.; Postolache, M. Iterative algorithms for split common fixed points of demicontractive operators without priori knowledge of operator norms. Carpath. J. Math. 2018, 34, 459–466. [Google Scholar]
- Yao, Y.; Liou, Y.-C.; Postolache, M. Self-adaptive algorithms for the split problem of the demicontractive operators. Optimization 2018, 67, 1309–1319. [Google Scholar] [CrossRef]
- Yao, Y.-H.; Postolache, M.; Liou, Y.-C.; Yao, Z.-S. Construction algorithms for a class of monotone variational inequalities. Optim. Lett. 2016, 10, 1519–1528. [Google Scholar] [CrossRef]
- Cubiotti, P.; Yao, J.-C. Discontinuous implicit quasi-variational inequalities with applications to fuzzy mappings. Math. Methods Oper. Res. 1997, 46, 213–228. [Google Scholar] [CrossRef]
- Fang, S.-C.; Hu, C.-F.; Wang, H.-F.; Wu, S.-Y. Linear programming with fuzzy coefficients in constraints. Comput. Math. Appl. 1999, 37, 63–76. [Google Scholar] [CrossRef]
- Jan, G.-M.; Sheu, R.-L.; Wu, S.-Y. Maximum feasibility problem for continuous linear inequalities with applications to fuzzy linear programming. Fuzzy Optim. Decis. Mak. 2003, 2, 297–316. [Google Scholar] [CrossRef]
- Liou, Y.-C.; Wu, S.-Y.; Yao, J.-C. Bilevel decision with generalized semi-infinite optimization for fuzzy mappings as lower level problems. Fuzzy Optim. Decis. Mak. 2005, 4, 41–50. [Google Scholar] [CrossRef]
- Yao, Y.; Qin, X.; Yao, J.-C. Projection methods for firmly type nonexpansive operators. J. Nonlinear Convex Anal. 2018, 19, 407–415. [Google Scholar]
- Lan, H.-Y. An approach for solving fuzzy implicit variational inequalities with linear membership functions. Comput. Math. Appl. 2008, 55, 563–572. [Google Scholar] [CrossRef]
- Wu, Z.Z.; Xu, J.P. A Class of Fuzzy Variational Inequality Based on Monotonicity of Fuzzy Mappings. Abstr. Appl. Anal. 2013, 2013, 854751. [Google Scholar] [CrossRef]
- Tang, G.-J.; Zhao, T.; Wan, Z.P.; He, D.-X. Existence results of a perturbed variational inequality with a fuzzy mapping. Fuzzy Sets Syst. 2018, 331, 68–77. [Google Scholar] [CrossRef]
- Fukushima, M. Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems. Math. Program. 1992, 53, 99–110. [Google Scholar] [CrossRef]
- Apostol, T.-M. Mathematical Analysis; Addison-Wesley: Boston, MA, USA, 1957. [Google Scholar]
- Qi, L.; Shapiro, A.; Ling, C. Differentiability and semismoothness properties of integral functions and their applications. Math. Program. 2005, 102, 223–248. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Jia, Z.; Liou, Y.-C. A Class of Nonlinear Fuzzy Variational Inequality Problems. Mathematics 2019, 7, 54. https://doi.org/10.3390/math7010054
Li C, Jia Z, Liou Y-C. A Class of Nonlinear Fuzzy Variational Inequality Problems. Mathematics. 2019; 7(1):54. https://doi.org/10.3390/math7010054
Chicago/Turabian StyleLi, Cunlin, Zhifu Jia, and Yeong-Cheng Liou. 2019. "A Class of Nonlinear Fuzzy Variational Inequality Problems" Mathematics 7, no. 1: 54. https://doi.org/10.3390/math7010054
APA StyleLi, C., Jia, Z., & Liou, Y.-C. (2019). A Class of Nonlinear Fuzzy Variational Inequality Problems. Mathematics, 7(1), 54. https://doi.org/10.3390/math7010054

