A Numerical Method for Solving a Class of Nonlinear Second Order Fractional Volterra Integro-Differntial Type of Singularly Perturbed Problems
Abstract
:1. Introduction
2. Reproducing Kernel Method
- where a and b are constants.
- If is continuous on , then for positive real numbers and
- where is a real number grater than
- where c is constant,
- where a and b are constants,
- For and is a positive real number,
- for all
- for all and
3. Analytical Results
4. Solution Method
5. Numerical Results
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tsalyuk, Z.B. Volterra integral equations. J. Sov. Math. 1979, 12, 715–758. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Y.; Huang, Y. Spectral-collocation method for fractional Fredholm integro-differntial equations. J. Korean Math. Soc. 2014, 51, 203–224. [Google Scholar] [CrossRef]
- Sahu, P.K.; Ray, S.S. Legendre wavelets operational method for the numerical solutions of nonlinear Volterra integro-differntial equations system. Appl. Math. Comput. 2015, 256, 715–723. [Google Scholar]
- Yüzbaşı, Ş. Laguerre approach for solving pantograph-type Volterra integro-differntial equations. Appl. Math. Comput. 2014, 232, 1183–1199. [Google Scholar]
- Yang, Z.; Tang, T.; Zhang, J. Blowup of Volterra Integro-differntial Equations and Applications to Semi-Linear Volterra Diffusion Equations. Numer. Math. Theory Methods Appl. 2017, 10, 737–759. [Google Scholar] [CrossRef]
- Sekar, R.C.G.; Murugesan, K. Numerical Solutions of Non-Linear System of Higher Order Volterra Integro-differntial Equations using Generalized STWS Technique. In Differential Equations and Dynamical Systems; Oxford University Press: Oxford, UK, 2017; pp. 1–13. [Google Scholar]
- Rahimkhani, P.; Ordokhani, Y.; Babolian, E. Fractional-order Bernoulli functions and their applications in solving fractional Fredholem—Volterra integro-differntial equations. Appl. Numer. Math. 2017, 122, 66–81. [Google Scholar] [CrossRef]
- Jiang, Y.; Ma, J. Spectral collocation methods for Volterra-integro differential equations with noncompact kernels. J. Comput. Appl. Math. 2013, 244, 115–124. [Google Scholar] [CrossRef]
- Öztürk, Y.; Gülsu, M. An Operational Matrix Method for Solving a Class of Nonlinear Volterra Integro-differntial Equations by Operational Matrix Method. Int. J. Appl. Comput. Math. 2017, 3, 1–16. [Google Scholar] [CrossRef]
- Alvandi, A.; Paripour, M. Reproducing kernel method with Taylor expansion for linear Volterra integro-differntial equations. Commun. Numer. Anal. 2017, 2017, 40–49. [Google Scholar] [CrossRef]
- Tunç, C. New stability and boundedness results to Volterra integro-differntial equations with delay. J. Egypt. Math. Soc. 2016, 24, 210–213. [Google Scholar] [CrossRef]
- Ma, X.; Huang, C. Spectral collocation method for linear fractional integro-differntial equations. Appl. Math. Model. 2014, 38, 1434–1448. [Google Scholar] [CrossRef]
- Berenguer, M.I.; Garralda-Guillem, A.I.; Galán, M.R. An approximation method for solving systems of Volterra integro-differntial equations. Appl. Numer. Math. 2013, 67, 126–135. [Google Scholar] [CrossRef]
- Lovitt, W.V. Linear Integral Equations; Courier Corporation: North Chelmsford, MA, USA, 2014. [Google Scholar]
- Song, Y.; Kim, H. The solution of Volterra integral equation of the second kind by using the Elzaki transform. Appl. Math. Sci. 2014, 8, 525–530. [Google Scholar] [CrossRef]
- Prandtle, L. Uber flussigkeits-bewegung bei kleiner reibung verhandlungen. In Proceedings of the III International Math Congress, Tuebner, Leipzig, 5–7 December 1905; pp. 484–491. [Google Scholar]
- Schlichting, H. Boundary-Layer Theory; Mcgraw-Hill: New York, NY, USA, 1979. [Google Scholar]
- Friedrichs, K.O.; Wasow, W. Singular perturbations of nonlinear oscillations. Duke Math. J. 1946, 13, 367–381. [Google Scholar] [CrossRef]
- Abrahamsson, L.R. A prior estimates for solutions of singular perturbations with a turning point. Stud. Appl. Math. 1977, 56, 51–69. [Google Scholar] [CrossRef]
- Chou, H. Some applications of the singular perturbation method to the bending problems of thin plates and shells. Appl. Math. Mech. 1948, 5, 1449–1457. [Google Scholar]
- Kokotović, P.V. Applications of singular perturbation techniques to control problems. SIAM Rev. 1984, 26, 501–550. [Google Scholar] [CrossRef]
- Kokotovic, P.V.; O’malley, R.E.; Sannuti, P. Singular perturbations and order reduction in control theory—An overview. Automatic 1976, 12, 123–132. [Google Scholar] [CrossRef]
- Ghorbel, F.; Spong, M.W. Integral manifolds of singularly perturbed systems with application to rigid-link flexible-joint multibody systems. Int. J. Non-Linear Mech. 2000, 35, 133–155. [Google Scholar] [CrossRef]
- Fridman, E. State-feedback H∞ control of nonlinear singularly perturbed systems. Int. J. Robust Nonlinear Control 2001, 11, 1115–1125. [Google Scholar] [CrossRef]
- Fridman, E. Exact slow—Fast decomposition of the nonlinear singularly perturbed optimal control problem. Syst. Control Lett. 2000, 40, 121–131. [Google Scholar] [CrossRef]
- Archibasov, A.A.; Korobeinikov, A.; Sobolev, V.A. Passage to the limit in a singularly perturbed partial integro-differential system. Differ. Equ. 2016, 52, 1115–1122. [Google Scholar] [CrossRef]
- Archibasov, A.A.; Korobeinikov, A.; Sobolev, V.A. Asymptotic expansions of solutions in a singularly perturbed model of virus evolution. Comput. Math. Math. Phys. 2015, 55, 240–250. [Google Scholar] [CrossRef]
- Korobeinikov, A.; Archibasov, A.; Sobolev, V. Order reduction for an rna virus evolution model. Math. Biosci. Eng. 2015, 12, 1007–1016. [Google Scholar] [CrossRef] [PubMed]
- Nefedov, N.N.; Nikitin, A.G. Method of differential inequalities for step-like contrast structures in singularly perturbed integro-differential equations in the spatially two-dimensional case. Diff. Equ. 2006, 42, 739. [Google Scholar] [CrossRef]
- Nefedov, N.N.; Nikitin, A.G. Boundary and internal layers in the reaction-diffusion problem with a nonlocal inhibitor. Comput. Math. Math. Phys. 2011, 51, 1011. [Google Scholar] [CrossRef]
- Omel’chenko, O.E.; Nefedov, N.N. Boundary-layer solutions to quasilinear integro-differential equations of the second order. Comput. Math. Math. Phys. 2002, 42, 470–482. [Google Scholar]
- Kashkari, B.; Syam, M. Fractional-order Legendre operational matrix of fractional integration for solving the Riccati equation with fractional order. Appl. Math. Comput. 2016, 290, 281–291. [Google Scholar] [CrossRef]
- Syam, M.; Siyyam, H.; Al-Subaihi, I. Tau-Path Following method for Solving the Riccati Equation with Fractional Order. J. Comput. Methods Phys. 2014, 2014, 207916. [Google Scholar] [CrossRef]
- Ariel, P.D.; Syam, M.I.; Al-Mdallal, Q.M. The extended homotopy perturbation method for the boundary layer flow due to a stretching sheet with partial slip. Int. J. Comput. Math. 2013, 90, 1990–2002. [Google Scholar] [CrossRef]
- Al-Refai, M. On the Fractional Derivatives at Extreme Points. Electron. J. Qual. Theory Differ. Equ. 2012, 55, 1–5. [Google Scholar] [CrossRef]
- Al-Mdallal, Q.; Syam, M. An efficient method for solving non-linear singularly perturbed two points boundary-value problems of fractional order. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 2299–2308. [Google Scholar] [CrossRef]
- Syam, M.; Attili, B. Numerical solution of singularly perturbed fifth order two point boundary value problem. Appl. Math. Comput. 2005, 170, 1085–1094. [Google Scholar] [CrossRef]
- Kashkaria, B.; Syam, M. Evolutionary computational intelligence in solving a class of nonlinear Volterra—Fredholm integro-differntial equations. J. Comput.l Appl. Math. 2017, 311, 314–323. [Google Scholar] [CrossRef]
- Nefedov, N.N.; Nikitin, A.G. The asymptotic method of differential inequalities for singularly perturbed integro-differential equations. Differ. Equ. 2000, 36, 1544–1550. [Google Scholar] [CrossRef]
x | |||
---|---|---|---|
0 | × | × | × |
× | × | × | |
× | × | × | |
× | × | × | |
× | × | × | |
× | × | × | |
× | × | × | |
× | × | × | |
× | × | × | |
× | × | × | |
1 | × | × | × |
Computational time | |
---|---|
x | |||
---|---|---|---|
0 | × | × | × |
× | × | × | |
× | × | × | |
× | × | × | |
× | × | × | |
× | × | × | |
× | × | × | |
× | × | × | |
× | × | × | |
× | × | × | |
1 | × | × | × |
Computational time | |
---|---|
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syam, M.I.; Abu Omar, M. A Numerical Method for Solving a Class of Nonlinear Second Order Fractional Volterra Integro-Differntial Type of Singularly Perturbed Problems. Mathematics 2018, 6, 48. https://doi.org/10.3390/math6040048
Syam MI, Abu Omar M. A Numerical Method for Solving a Class of Nonlinear Second Order Fractional Volterra Integro-Differntial Type of Singularly Perturbed Problems. Mathematics. 2018; 6(4):48. https://doi.org/10.3390/math6040048
Chicago/Turabian StyleSyam, Muhammed I., and Mohammed Abu Omar. 2018. "A Numerical Method for Solving a Class of Nonlinear Second Order Fractional Volterra Integro-Differntial Type of Singularly Perturbed Problems" Mathematics 6, no. 4: 48. https://doi.org/10.3390/math6040048
APA StyleSyam, M. I., & Abu Omar, M. (2018). A Numerical Method for Solving a Class of Nonlinear Second Order Fractional Volterra Integro-Differntial Type of Singularly Perturbed Problems. Mathematics, 6(4), 48. https://doi.org/10.3390/math6040048