Soft Neutrosophic Modules
Abstract
:1. Introduction
2. Preliminaries
2.1. Soft Sets Theory
- (i)
- , and
- (ii)
- F(x) and G(x) are identical approximations. We write.
2.2. Neutrosophic Theory
- (i)
- N(G) always contains a group.
- (ii)
- N(G) is not a group in general (see [2]).
- (i)
- is a neutrosophic subgroup of N(G).
- (ii)
- is a neutrosophic subgroup of N(G),
- (iii)
3. Soft Neutrosophic (Soft-N) Modules
- (i)
- (G, A) (I) is a soft-N G-mod itself, because (G, A) (I) is a soft-N abelian group. Hence the multiplication in G gives us a mapping:G × (G, A) (I) → (G, A) (I).The soft-N ring axioms provide that this scalar multiplication turns G into a soft-N G-mod.
- (ii)
- (G, A) (I) is a weak soft-N G-mod on a soft ring (Q, A). Moreover this is a strong soft-N G-mod on a soft-N ring (Q, A) (I).
- (iii)
- If K is closed under addition and multiplication by arbitrary elements of soft (G, A) (I), then K is an soft-N G-mod under the (+) and (.) of G,
- (iv)
- (G, A)n (I) is a weak soft-N G-mod on a soft ring (G, A). Moreover this is a strong soft-N G-mod over a soft-N ring (G, A) (I).
- (v)
- (H, A)m×n (I) = {[aij]: aij ∈ (Q, A) (I)} is a weak soft-N G-mod on a soft ring (Q, A). Moreover this is a strong soft-N G-mod on a soft-N ring (Q, A) (I).
= xk + xn + [xm + xp + yk + ym + yn + yp]I
= (x + yI) (k + mI) + (x + yI) (n + pI)
= qa1+ qa2.
= xk + zk + [xm + zm + yk + tk + ym + tm]I
= (x + yI) (k + mI) + (z + tI) (k + mI)
= qa1 + wa1
= xzk + [xzm + xtk + yzk + ytk + xtm + yzm + ytm]I
= (x + yI) ((z + tI) (k + mI))
= q(wa1)
1a1= (1 + 1I) (k + mI)
= 1k + 1m I
= k + mI = a1.
- (i)
- a1 + a3= a2 + a3 implies a1= a2.
- (ii)
- q0 = 0.
- (iii)
- 0a1 = 0.
- (iv)
- (−q) a1 = q(−a1) = −(q a1).
- (i)
- q(0 + 0I) = (x + yI) (0 + 0I)= (x0 + x0 + y0 + y0I)= (0 + 0I) = 0
- (ii)
- 0a1 = 0(k + mI) = 0
- (iii)
- (−q) a1 = (−x − yI) (n + pI) =(−xn − xpI − ynI − ypI)q(−a1) = (x + yI) (−n − pI) =(−xn − xpI − ynI − ypI)−(q a1) = −((x + yI) (n + pI)) =(−xn − xpI − ynI − ypI).
- (i)
- a1, a2∈ (N, A) (I), implies a1 + a2∈ (N, A) (I).
- (ii)
- a1 ∈ (N, A) (I) and q = x + yI∈(G, A) (I) for all x, y∈G implies qa1 ∈ (N, A) (I).
- (iii)
- (N, A) (I) must include a proper soft subset which is a soft G-mod.
- (i)
- a1, a2 ∈ (N, A) (I) and every q, w ∈ (G, A) (I), implies qa1 + wa2 ∈ (N, A) (I)
- (ii)
- (N, A) (I) must include a proper soft subset which is a soft G-mod.
- (i)
- σ is a soft G-mod homomorphism.
- (ii)
- σ (I) = I.
- (i)
- The set {n (N, A) (I): σ(h) = n for some h H, A) (I)} is called the image of σ and it is denoted by Imσ.
- (ii)
- The set {am (H, A) (I): σ (am) = 0 for some am H (I)} is called the kernel of σ and it is denoted by Kerσ.
- (i)
- The mapping σ: (H, A) (I)(H, A) (I) is described as σ(a) = aa(H, A) (I) is soft-N G-mod homomorphism. Furthermore Kerσ = 0.
- (ii)
- The mapping σ: (H, A) (I)(H, A) (I) is described as σ(a) = 0a(H, A) (I) is soft-N G-mod homomorphism since I(H, A) (I). On the other hand σ(I)0.
- (i)
- The kernel of σ is not a strong soft-N submodule of (H, A) (I), on the other hand it is a soft submodule of (H, A).
- (ii)
- The image of σ is a strong soft-N submodule of (N, A) (I).
- (i)
- Ker σ(N, A) (I) =(N, A) (I) Kerσ(N,A)(I)
- (ii)
- σ (N,A)(I) is a soft-N G-mod homomorphism.
- (iii)
- σ ((N, A) (I))= Imσ(N,A)(I).
- (i)
- The restriction of σ to (N, A) (I), σ (N,A)(I) is a soft-N G-mod homomorphism since σ is a soft-N G-mod homomorphism.
- (ii)
- It is obtain easily from definition of the σ. □
= μ(I)
= I.
- (i)
- If μσ is surjective, then σ is surjective.
- (ii)
- If μσ is injective, then μ is injective.
- (iii)
- If μ and σ are injective, then μσ is injective.
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Molodtsov, D. Soft Set Theory—First result. Comput. Math. Appl. 1999, 37, 19–31. [Google Scholar] [CrossRef]
- Shabir, M.; Ali, M.; Naz, M.; Smarandache, F. Soft Neutrosophic Group. Neutrosophic Sets Syst. 2013, 1, 13–25. [Google Scholar]
- Ali, M.; Smarandache, F.; Shabir, M.; Naz, M. Soft Neutrosophic Ring and Soft Neutrosophic Field. Neutrosophic Sets Syst. 2014, 3, 53–57. [Google Scholar]
- Ali, M.; Smarandache, F.; Vladareanu, L.; Shabir, M. Generalization of Soft Neutrosophic Rings and Soft Neutrosophic Fields. Neutrosophic Sets Syst. 2014, 6, 35–41. [Google Scholar]
- Agboola, A.A.A.; Akinola, A.D.; Oyebola, O.Y. Neutrosophic Rings I. Int. J. Math. Comb. 2011, 4, 1–14. [Google Scholar]
- Yetkin, E.; Olgun, N. A New Type Fuzzy Module over Fuzzy Rings. Sci. World J. 2014, 2014, 730932. [Google Scholar] [CrossRef] [PubMed]
- Sharp, R.Y. Steps in Commutative Algebra, 2nd ed.; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Bera, T.; Mahapatra, N.K. On Neutrosophic Soft Linear Spaces. Fuzzy Inf. Eng. 2017, 9, 299–324. [Google Scholar] [CrossRef]
- Acar, U.; Koyuncu, F.; Tanay, B. Soft Sets and Soft Ring. Comput. Math. Appl. 2010, 59, 3458–3463. [Google Scholar] [CrossRef]
- Uluçay, V.; Sahin, M.; Olgun, N.; Oztekin, O.; Emniyet, A. Generalized Fuzzy σ-Algebra and Generalized Fuzzy Measure on Soft Sets. Indian J. Sci. Technol. 2016, 9, 1–7. [Google Scholar] [CrossRef]
- Uluçay, V.; Şahin, M.; Olgun, N. Soft Normed Rings. SpringerPlus 2016, 5, 1950–1956. [Google Scholar] [CrossRef]
- Vasantha Kandasamy, W.B.; Smarandache, F. Neutrosophic Rings; Hexis: Phoenix, AZ, USA, 2006. [Google Scholar]
- Uluçay, V.; Şahin, M.; Olgun, N. Normed Z-Modules. Int. J. Pure Appl. Math. 2017, 112, 425–435. [Google Scholar]
- Şahin, M.; Olgun, N.; Uluçay, V. Normed Quotient Rings. New Trends Math. Sci. 2018, 6, 52–58. [Google Scholar]
- Şahin, M.; Olgun, N.; Kargın, A.; Uluçay, V. Isomorphism theorems for soft G-modules. Afr. Mat. 2018, 29, 1–8. [Google Scholar] [CrossRef]
- Smarandache, F.; Şahin, M.; Kargın, A. Neutrosophic Triplet G-Module. Mathematics 2018, 6, 53. [Google Scholar] [CrossRef]
- Şahin, M.; Kargın, A. Neutrosophic Triplet Inner Product. Neutrosophic Oper. Res. 2017, 2, 193–205. [Google Scholar]
- Şahin, M.; Uluçay, V.; Olgun, N.; Kilicman, A. On Neutrosophic Soft Lattices. Afr. Mat. 2017, 28, 379–388. [Google Scholar]
- Sahin, M.; Deli, I.; Ulucay, V. Similarity measure of bipolar neutrosophic sets and their application to multiple criteria decision making. Neural Comput. Appl. 2016, 29, 739–748. [Google Scholar]
- Hassan, N.; Ulucay, V.; Sahin, M. Q-Neutrosophic Soft Expert Set and Its Application in Decision Making. Int. J. Fuzzy Syst. Appl. 2018, 7, 37–61. [Google Scholar] [CrossRef]
- Uluçay, V.; Şahin, M.; Hassan, N. Generalized Neutrosophic Soft Expert Set for Multiple-Criteria Decision-Making. Symmetry 2018, 10, 437. [Google Scholar] [CrossRef]
- Agboola, A.A.A.; Akinleye, S.A. Neutrosophic Vector Space. Neutrosophic Sets Syst. 2014, 4, 9–18. [Google Scholar]
- Aktas, H.; Çağman, N. Soft Sets and Soft Groups. Inf. Sci. 2007, 177, 2726–2735. [Google Scholar] [CrossRef]
- Olgun, N.; Bal, M. Neutrosophic Modules. Neutrosophic Operational Research Volume II; Pons Publishing House: Bruxelles, Belgium, 2016; pp. 181–192. [Google Scholar]
- Maji, P.K.; Biswas, R.; Roy, A.R. Soft set theory. Comput. Math. Appl. 2003, 45, 555–562. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.-M.; Zhang, Z.-L.; Liu, J. Soft sets and soft modules. Lect. Notes Comput. Sci. 2008, 5009, 403–409. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bal, M.; Olgun, N. Soft Neutrosophic Modules. Mathematics 2018, 6, 323. https://doi.org/10.3390/math6120323
Bal M, Olgun N. Soft Neutrosophic Modules. Mathematics. 2018; 6(12):323. https://doi.org/10.3390/math6120323
Chicago/Turabian StyleBal, Mikail, and Necati Olgun. 2018. "Soft Neutrosophic Modules" Mathematics 6, no. 12: 323. https://doi.org/10.3390/math6120323
APA StyleBal, M., & Olgun, N. (2018). Soft Neutrosophic Modules. Mathematics, 6(12), 323. https://doi.org/10.3390/math6120323