Fourier Series for Functions Related to Chebyshev Polynomials of the First Kind and Lucas Polynomials
Abstract
:1. Introduction and Preliminaries
- (a)
- (b)
- (a)
- (b)
- for all ;
- (a)
- (b)
- for ;
2. Fourier Series Expansions for Functions Related to the Chebyshev Polynomials of the First Kind
3. Fourier Series Expansions for Functions Related to the Lucas Polynomials
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Faber, C.; Pandharipande, R. Hodge integrals and Gromov-Witten theory. Invent. Math. 2000, 139, 173–199. [Google Scholar] [CrossRef] [Green Version]
- Dunne, G.V.; Schubert, C. Bernoulli number identities from quantum field theory and topological string theory. Commun. Number Theory Phys. 2013, 7, 225–249. [Google Scholar] [CrossRef] [Green Version]
- Gessel, I.M. On Miki’s identity for Bernoulli numbers. J. Number Theory 2005, 110, 75–82. [Google Scholar] [CrossRef]
- Miki, H. A relation between Bernoulli numbers. J. Number Theory 1978, 10, 297–302. [Google Scholar] [CrossRef]
- Shiratani, K.; Yokoyama, S. An application of p-adic convolutions. Mem. Fac. Sci. Kyushu Univ. Ser. A 1982, 36, 73–83. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Jang, L.C.; Jang, G.-W. Fourier series of sums of products of Bernoulli functions and their applications. J. Nonlinear Sci. Appl. 2017, 10, 2798–2815. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P.; Kim, D.S.; Kim, T.; Kwon, J. Sums of finite products of Bernoulli functions. Adv. Differ. Equ. 2017, 2017, 237. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Kim, D.S.; Jang, G.-W.; Kwon, J. Sums of finite products of Euler functions. In Advances in Real and Complex Analysis with Applications, 243–260, Trends in Math; Birkhäuser: Basel, Switzerland, 2017. [Google Scholar]
- Kim, T.; Kim, D.S.; Dolgy, D.V.; Kwon, J. Sums of finite products of Chebyshev polynomials of the third and fourth kinds. Adv. Differ. Equ. 2018, 2018, 283. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Dolgy, D.V.; Park, J.W. Sums of finite products of Chebyshev polynomials of the second and of Fibonacci polynomials. J. Inequal. Appl. 2018, 2018, 148. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Kim, D.S.; Dolgy, D.V.; Park, J.W. Sums of finite products of Legendre and Laguerre polynomials. Adv. Differ. Equ. 2018, 2018, 277. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Jang, L.C.; Jang, G.-W. Sums of finite products of Genocchi functions. Adv. Differ. Equ. 2017, 2017, 268. [Google Scholar] [CrossRef]
- Andrews, G.E.; Askey, R.; Roy, R. Special functions. In Encyclopedia of Mathematics and Its Applications 71; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Beals, R.; Wong, R. Special functions and orthogonal polynomials. In Cambridge Studies in Advanced Mathematics 153; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Ma, R.; Zhang, W. Several identities involving the Fibonacci numbers and Lucas numbers. Fibonacci Q. 2007, 45, 164–170. [Google Scholar]
- Wang, T.; Zhang, W. Some identities involving Fibonacci, Lucas polynomials and their applications. Bull. Math. Soc. Sci. Math. Roumanie 2012, 55, 95–103. [Google Scholar]
- Zhang, W. Some identities involving the Fibonacci numbers and Lucas numbers. Fibonacci Q. 2004, 42, 149–154. [Google Scholar]
- Jang, G.-W.; Dolgy, D.V.; Jang, L.C.; Kim, D.S.; Kim, T. Sums of products of two variable higher-order Fubini functions arising from Fourier series. Adv. Stud. Contemp. Math. (Kyungshang) 2018, 28, 533–550. [Google Scholar]
- Kim, D.S.; Kim, T.; Kwon, H.-I.; Kwon, J. Representing sums of finite products of Chebyshev polynomials of the second kind and Fibonacci polynomials in terms of Chebyshev polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2018, 28, 321–335. [Google Scholar]
- Kim, T.; Dolgy, D.V.; Kim, D.S. Fourier series of sums of products of higher-order Genocchi functions. Adv. Stud. Contemp. Math. (Kyungshang) 2018, 28, 215–230. [Google Scholar]
- Kim, T.; Kim, D.S.; Kwon, J.; Jang, G.-W. Sums of finite products of Legendre and Laguerre polynomials by Chebyshev polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2018, 28, 551–565. [Google Scholar]
- Kim, T.; Kim, D.S.; Dogly, D.V.; Jang, G.-W.; Kwon, J. Fourier series of functions related to two variable higher-order Fubini polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2018, 28, 589–605. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.; Kim, D.S.; Jang, L.-C.; Jang, G.-W. Fourier Series for Functions Related to Chebyshev Polynomials of the First Kind and Lucas Polynomials. Mathematics 2018, 6, 276. https://doi.org/10.3390/math6120276
Kim T, Kim DS, Jang L-C, Jang G-W. Fourier Series for Functions Related to Chebyshev Polynomials of the First Kind and Lucas Polynomials. Mathematics. 2018; 6(12):276. https://doi.org/10.3390/math6120276
Chicago/Turabian StyleKim, Taekyun, Dae San Kim, Lee-Chae Jang, and Gwan-Woo Jang. 2018. "Fourier Series for Functions Related to Chebyshev Polynomials of the First Kind and Lucas Polynomials" Mathematics 6, no. 12: 276. https://doi.org/10.3390/math6120276
APA StyleKim, T., Kim, D. S., Jang, L.-C., & Jang, G.-W. (2018). Fourier Series for Functions Related to Chebyshev Polynomials of the First Kind and Lucas Polynomials. Mathematics, 6(12), 276. https://doi.org/10.3390/math6120276