New Numerical Method for Solving Tenth Order Boundary Value Problems
Abstract
1. Introduction
2. Reproducing Kernel Spaces and Their Reproducing Kernel Functions
3. Solutions in
The Main Results
4. Numerical Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Iqbal, M.J.; Rehman, S.; Pervaiz, A.; Hakeem, A. Approximations for linear tenth-order boundary value problems through polynomial and non-polynomial cubic spline techniques. Proc. Pakistan Acad. Sci. 2015, 52, 389–396. [Google Scholar]
- Usmani, R.A. The use of quartic splines in the numerical solution of a fourth-order boundary value problem. J. Comput. Appl. Math. 1992, 44, 187–199. [Google Scholar] [CrossRef]
- Twizell, E.H.; Boutayeb, A.; Djidjeli, K. Numerical methods for eighth-, tenth- and twelfth-order eigenvalue problems arising in thermal instability. Adv. Comput. Math. 1994, 2, 407–436. [Google Scholar] [CrossRef]
- Ahlberg, J.H.; Ito, T. A collocation method for two-point boundary value problems. Math. Comp. 1975, 29, 761–776. [Google Scholar] [CrossRef]
- Islam, S.U.; Tirmizi, I.A.; Haq, F.I.; Khan, M.A. Non-polynomial splines approach to the solution of sixth-order boundary-value problems. Appl. Math. Comput. 2008, 195, 270–284. [Google Scholar]
- Papamichael, N.; Worsey, A.J. A cubic spline method for the solution of a linear fourth-order two-point boundary value problem. J. Comput. Appl. Math. 1981, 7, 187–189. [Google Scholar] [CrossRef]
- Siddiqi, S.S.; Twizell, E.H. Spline solutions of linear twelfth-order boundary-value problems. J. Comput. Appl. Math. 1997, 78, 371–390. [Google Scholar] [CrossRef]
- Siddiqi, S.S.; Twizell, E.H. Spline solutions of linear tenth-order boundary-value problems. Int. J. Comput. Math. 1998, 68, 345–362. [Google Scholar] [CrossRef]
- Zaremba, S. Sur le calcul numérique des fonctions demandées dan le probléme de dirichlet et le probleme hydrodynamique. Bulletin International l’Académia des Sciences de Cracovie 1908, 68, 125–195. [Google Scholar]
- Aronszajn, N. Theory of reproducing kernels. Trans. Am. Math. Soc. 1950, 68, 337–404. [Google Scholar] [CrossRef]
- Arqub, O.A. Numerical solutions of systems of first-order, two-point BVPs based on the reproducing kernel algorithm. Calcolo 2018, 55, 31. [Google Scholar] [CrossRef]
- Akgül, E.K. Reproducing kernel Hilbert space method for solutions of a coefficient inverse problem for the kinetic equation. Int. J. Optim. Control. Theor. Appl. 2018, 8, 145–151. [Google Scholar] [CrossRef]
- Al-Azzawi, S.N.; Momani, S.; Al-Deen Jameel, H.E. Full details of solving initial value problems by reproducing kernel Hilbert space method. Math. Theor. Model. 2015, 5, 11–19. [Google Scholar]
- Chavan, S.; Podder, S.; Trivedi, S. Commutants and reflexivity of multiplication tuples on vector-valued reproducing kernel Hilbert spaces. J. Math. Anal. Appl. 2018, 466, 1337–1358. [Google Scholar] [CrossRef]
- Chen, L.; Cheng, Y.M. The complex variable reproducing kernel particle method for bending problems of thin plates on elastic foundations. Comput. Mech. 2018, 62, 67–80. [Google Scholar] [CrossRef]
- Farzaneh Javan, S.; Abbasbandy, S.; Fariborzi Araghi, M.A. Application of reproducing kernel Hilbert space method for solving a class of nonlinear integral equations. Math. Probl. Eng. 2017, 2017, 1–10. [Google Scholar] [CrossRef]
- Geng, F.; Tang, Z.; Zhou, Y. Reproducing kernel method for singularly perturbed one-dimensional initial-boundary value problems with exponential initial layers. Qual. Theory Dyn. Syst. 2018, 17, 177–187. [Google Scholar] [CrossRef]
- Geng, F.J. A new reproducing kernel Hilbert space method for solving nonlinear fourthorder boundary value problems. Appl. Math. Comput. 2009, 213, 163–169. [Google Scholar]
- Javadi, S.; Babolian, E.; Moradi, E. New implementation of reproducing kernel Hilbert space method for solving a class of functional integral equations. Commun. Numer. Anal. 2014, 2014, 1–7. [Google Scholar] [CrossRef]
- Li, X.; Wu, B. A new reproducing kernel collocation method for nonlocal fractional boundary value problems with non-smooth solutions. Appl. Math. Lett. 2018, 86, 194–199. [Google Scholar] [CrossRef]
- Mohammadi, M.; Zafarghandi, F.S.; Babolian, E.; Jvadi, S. A local reproducing kernel method accompanied by some different edge improvement techniques: application to the Burgers’ equation. Iran. J. Sci. Technol. Trans. A Sci. 2018, 42, 857–871. [Google Scholar] [CrossRef]
- Momani, Z.; Al Shridah, M.; Abu Arqub, O.; Al-Momani, M.; Momani, S. Modeling and analyzing neural networks using reproducing kernel Hilbert space algorithm. Appl. Math. Inf. Sci. 2018, 12, 89–99. [Google Scholar] [CrossRef]
- Moradi, E.; Yusefi, A.; Abdollahzadeh, A.; Tila, E.J. New implementation of reproducing kernel Hilbert space method for solving a class of third-order differential equations. J. Math. Comput. Sci. 2014, 12, 253–262. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Du, M.-J.; Temuer, C.-L.; Tian, D. Using reproducing kernel for solving a class of time-fractional telegraph equation with initial value conditions. Int. J. Comput. Math. 2018, 95, 1609–1621. [Google Scholar] [CrossRef]
- Xu, M.; Niu, J.; Lin, Y. An efficient method for fractional nonlinear differential equations by quasi-Newton’s method and simplified reproducing kernel method. Math. Methods Appl. Sci. 2018, 41, 5–14. [Google Scholar] [CrossRef]
- Cui, M.; Lin, Y. Nonlinear Numerical Analysis in the Reproducing Kernel Space; Nova Science Publishers Inc.: New York, NY, USA, 2009. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akgül, A.; Karatas Akgül, E.; Baleanu, D.; Inc, M. New Numerical Method for Solving Tenth Order Boundary Value Problems. Mathematics 2018, 6, 245. https://doi.org/10.3390/math6110245
Akgül A, Karatas Akgül E, Baleanu D, Inc M. New Numerical Method for Solving Tenth Order Boundary Value Problems. Mathematics. 2018; 6(11):245. https://doi.org/10.3390/math6110245
Chicago/Turabian StyleAkgül, Ali, Esra Karatas Akgül, Dumitru Baleanu, and Mustafa Inc. 2018. "New Numerical Method for Solving Tenth Order Boundary Value Problems" Mathematics 6, no. 11: 245. https://doi.org/10.3390/math6110245
APA StyleAkgül, A., Karatas Akgül, E., Baleanu, D., & Inc, M. (2018). New Numerical Method for Solving Tenth Order Boundary Value Problems. Mathematics, 6(11), 245. https://doi.org/10.3390/math6110245