New Numerical Method for Solving Tenth Order Boundary Value Problems
Abstract
:1. Introduction
2. Reproducing Kernel Spaces and Their Reproducing Kernel Functions
3. Solutions in
The Main Results
4. Numerical Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Iqbal, M.J.; Rehman, S.; Pervaiz, A.; Hakeem, A. Approximations for linear tenth-order boundary value problems through polynomial and non-polynomial cubic spline techniques. Proc. Pakistan Acad. Sci. 2015, 52, 389–396. [Google Scholar]
- Usmani, R.A. The use of quartic splines in the numerical solution of a fourth-order boundary value problem. J. Comput. Appl. Math. 1992, 44, 187–199. [Google Scholar] [CrossRef]
- Twizell, E.H.; Boutayeb, A.; Djidjeli, K. Numerical methods for eighth-, tenth- and twelfth-order eigenvalue problems arising in thermal instability. Adv. Comput. Math. 1994, 2, 407–436. [Google Scholar] [CrossRef]
- Ahlberg, J.H.; Ito, T. A collocation method for two-point boundary value problems. Math. Comp. 1975, 29, 761–776. [Google Scholar] [CrossRef]
- Islam, S.U.; Tirmizi, I.A.; Haq, F.I.; Khan, M.A. Non-polynomial splines approach to the solution of sixth-order boundary-value problems. Appl. Math. Comput. 2008, 195, 270–284. [Google Scholar]
- Papamichael, N.; Worsey, A.J. A cubic spline method for the solution of a linear fourth-order two-point boundary value problem. J. Comput. Appl. Math. 1981, 7, 187–189. [Google Scholar] [CrossRef]
- Siddiqi, S.S.; Twizell, E.H. Spline solutions of linear twelfth-order boundary-value problems. J. Comput. Appl. Math. 1997, 78, 371–390. [Google Scholar] [CrossRef]
- Siddiqi, S.S.; Twizell, E.H. Spline solutions of linear tenth-order boundary-value problems. Int. J. Comput. Math. 1998, 68, 345–362. [Google Scholar] [CrossRef]
- Zaremba, S. Sur le calcul numérique des fonctions demandées dan le probléme de dirichlet et le probleme hydrodynamique. Bulletin International l’Académia des Sciences de Cracovie 1908, 68, 125–195. [Google Scholar]
- Aronszajn, N. Theory of reproducing kernels. Trans. Am. Math. Soc. 1950, 68, 337–404. [Google Scholar] [CrossRef]
- Arqub, O.A. Numerical solutions of systems of first-order, two-point BVPs based on the reproducing kernel algorithm. Calcolo 2018, 55, 31. [Google Scholar] [CrossRef]
- Akgül, E.K. Reproducing kernel Hilbert space method for solutions of a coefficient inverse problem for the kinetic equation. Int. J. Optim. Control. Theor. Appl. 2018, 8, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Al-Azzawi, S.N.; Momani, S.; Al-Deen Jameel, H.E. Full details of solving initial value problems by reproducing kernel Hilbert space method. Math. Theor. Model. 2015, 5, 11–19. [Google Scholar]
- Chavan, S.; Podder, S.; Trivedi, S. Commutants and reflexivity of multiplication tuples on vector-valued reproducing kernel Hilbert spaces. J. Math. Anal. Appl. 2018, 466, 1337–1358. [Google Scholar] [CrossRef]
- Chen, L.; Cheng, Y.M. The complex variable reproducing kernel particle method for bending problems of thin plates on elastic foundations. Comput. Mech. 2018, 62, 67–80. [Google Scholar] [CrossRef]
- Farzaneh Javan, S.; Abbasbandy, S.; Fariborzi Araghi, M.A. Application of reproducing kernel Hilbert space method for solving a class of nonlinear integral equations. Math. Probl. Eng. 2017, 2017, 1–10. [Google Scholar] [CrossRef]
- Geng, F.; Tang, Z.; Zhou, Y. Reproducing kernel method for singularly perturbed one-dimensional initial-boundary value problems with exponential initial layers. Qual. Theory Dyn. Syst. 2018, 17, 177–187. [Google Scholar] [CrossRef]
- Geng, F.J. A new reproducing kernel Hilbert space method for solving nonlinear fourthorder boundary value problems. Appl. Math. Comput. 2009, 213, 163–169. [Google Scholar]
- Javadi, S.; Babolian, E.; Moradi, E. New implementation of reproducing kernel Hilbert space method for solving a class of functional integral equations. Commun. Numer. Anal. 2014, 2014, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wu, B. A new reproducing kernel collocation method for nonlocal fractional boundary value problems with non-smooth solutions. Appl. Math. Lett. 2018, 86, 194–199. [Google Scholar] [CrossRef]
- Mohammadi, M.; Zafarghandi, F.S.; Babolian, E.; Jvadi, S. A local reproducing kernel method accompanied by some different edge improvement techniques: application to the Burgers’ equation. Iran. J. Sci. Technol. Trans. A Sci. 2018, 42, 857–871. [Google Scholar] [CrossRef]
- Momani, Z.; Al Shridah, M.; Abu Arqub, O.; Al-Momani, M.; Momani, S. Modeling and analyzing neural networks using reproducing kernel Hilbert space algorithm. Appl. Math. Inf. Sci. 2018, 12, 89–99. [Google Scholar] [CrossRef]
- Moradi, E.; Yusefi, A.; Abdollahzadeh, A.; Tila, E.J. New implementation of reproducing kernel Hilbert space method for solving a class of third-order differential equations. J. Math. Comput. Sci. 2014, 12, 253–262. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Du, M.-J.; Temuer, C.-L.; Tian, D. Using reproducing kernel for solving a class of time-fractional telegraph equation with initial value conditions. Int. J. Comput. Math. 2018, 95, 1609–1621. [Google Scholar] [CrossRef]
- Xu, M.; Niu, J.; Lin, Y. An efficient method for fractional nonlinear differential equations by quasi-Newton’s method and simplified reproducing kernel method. Math. Methods Appl. Sci. 2018, 41, 5–14. [Google Scholar] [CrossRef]
- Cui, M.; Lin, Y. Nonlinear Numerical Analysis in the Reproducing Kernel Space; Nova Science Publishers Inc.: New York, NY, USA, 2009. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akgül, A.; Karatas Akgül, E.; Baleanu, D.; Inc, M. New Numerical Method for Solving Tenth Order Boundary Value Problems. Mathematics 2018, 6, 245. https://doi.org/10.3390/math6110245
Akgül A, Karatas Akgül E, Baleanu D, Inc M. New Numerical Method for Solving Tenth Order Boundary Value Problems. Mathematics. 2018; 6(11):245. https://doi.org/10.3390/math6110245
Chicago/Turabian StyleAkgül, Ali, Esra Karatas Akgül, Dumitru Baleanu, and Mustafa Inc. 2018. "New Numerical Method for Solving Tenth Order Boundary Value Problems" Mathematics 6, no. 11: 245. https://doi.org/10.3390/math6110245
APA StyleAkgül, A., Karatas Akgül, E., Baleanu, D., & Inc, M. (2018). New Numerical Method for Solving Tenth Order Boundary Value Problems. Mathematics, 6(11), 245. https://doi.org/10.3390/math6110245