Solution for the System of Lane–Emden Type Equations Using Chebyshev Polynomials
Abstract
1. Introduction
2. Fundamental Relations
3. Method of Solution
4. Algorithm
5. Examples
6. Conclusions
Funding
Conflicts of Interest
References
- Fowler, R.H. Further studies of Emden’s and similar differential equations. Q. J. Math. 1931, 2, 259–288. [Google Scholar] [CrossRef]
- Meerson, E.; Megged, E.; Tajima, T. On the quasi-hydrostatic flows of radiatively cooling self-gravitating gas clouds. Astrophys. J. 1996, 457, 321. [Google Scholar] [CrossRef]
- Chandrasekhar, S. Introduction to Study of Stellar Structure. Available online: https://www.amazon.com/Introduction-Study-Stellar-Structure-Astronomy/dp/0486604136 (accessed on 22 August 2018).
- Davis, H.T. Introduction to Nonlinear Differential and Integral Equations. J. Lond. Math. Soc. 1962, 16, 556. [Google Scholar] [CrossRef]
- Flockerzi, D.; Sundmacher, K. On coupled Lane-Emden equations arising in dusty fluid models. J. Phys. Conf. Ser. 2011, 268, 012006. [Google Scholar] [CrossRef]
- Parand, K.; Pirkhedri, K. Sinc-collocation method for solving astrophysics equations. New Astron. 2010, 15, 533–537. [Google Scholar] [CrossRef]
- Dehghan, M.; Shakeri, F. Approximate solution of a differential equation arising in astrophysics using the variational iteration method. New Astron. 2008, 13, 53–59. [Google Scholar] [CrossRef]
- Parand, K.; Dehghan, M.; Rezaei, A.R.; Ghaderi, S. An approximation algorithm for the solution of the nonlinear Lane–Emden type equations arising in astrophysics using Hermite functions collocation method. Comput. Phys. Commun. 2010, 181, 1096–1108. [Google Scholar] [CrossRef]
- Singh, O.P.; Pandey, R.K.; Singh, V.K. An analytic algorithm of Lane–Emden type equations arising in astrophysics using modified Homotopy analysis method. Comput. Phys. Commun. 2009, 180, 1116–1124. [Google Scholar] [CrossRef]
- Hasan, Y.Q.; Zhu, L.M. Solving singular boundary value problems of higher-order ordinary differential equations by modified Adomian decomposition method. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 2592–2596. [Google Scholar] [CrossRef]
- Pandey, R.K.; Kumar, N.; Bhardwaj, A.; Dutta, G. Solution of Lane-Emden type equations using Legendre operational matrix of differentiation. Appl. Math. Comput. 2012, 218, 7629–7637. [Google Scholar] [CrossRef]
- Pandey, R.K.; Kumar, N. Solution of Lane-Emden type equations using Berstein operational matrix of differentiation. New Astron. 2012, 17, 303–308. [Google Scholar] [CrossRef]
- Agarwal, R.P.; O’Regan, D. Second order initial value problems of Lane-Emden type. Appl. Math. Lett. 2007, 20, 1198–1205. [Google Scholar] [CrossRef]
- Varani, S.K.; Aminataei, A. On the numerical solution of differential equations of Lane-Emden type. Comput. Math. Appl. 2010, 59, 2815–2820. [Google Scholar]
- Aslanov, A. A generalization of the Lane–Emden equation. Int. J. Comput. Math. 2008, 85, 1709–1725. [Google Scholar] [CrossRef]
- Wazwaz, A.M. A new algorithm for solving differential equations of Lane-Emden type. Appl. Math. Comput. 2001, 118, 287–310. [Google Scholar] [CrossRef]
- Wazwaz, A.M.; Rach, R.; Duan, J.S. A study on the systems of the Volterra integral forms of the Lane-Emden equations by the Adomian decomposition method. Math. Method Appl. Sci. 2013, 37, 10–19. [Google Scholar] [CrossRef]
- Marin, M. An approach of a heat-flux dependent theory for micropolar porous media. Meccanica 2016, 51, 1127–1133. [Google Scholar] [CrossRef]
- Marin, M. Some estimates on vibrations in Thermoelasticity of dipolar bodies. J. Vib. Control 2010, 16, 33–47. [Google Scholar] [CrossRef]
- Marin, M. A temporally evolutionary equation in elasticity of micropolar bodies with voids. U.P.B. Sci. Bull. Ser. A-Appl. Math. Phys. 1998, 60, 3–12. [Google Scholar]
- Gülsu, M.; Öztürk, Y.; Sezer, M. A new collocation method for solution of mixed linear integro-differential-difference equations. Appl. Math. Comput. 2010, 216, 2183–2198. [Google Scholar] [CrossRef]
- Gülsu, M.; Öztürk, Y.; Sezer, M. On the solution of the Abel equation of the second kind by the shifted Chebyshev polynomials. Appl. Math. Comput. 2011, 217, 4827–4833. [Google Scholar] [CrossRef]
- Daşçıoğlu, A.; Yaslan, H. The solution of high-order nonlinear ordinary differential equations by Chebyshev polynomials. Appl. Math. Comput. 2011, 217, 5658–5666. [Google Scholar]
- Öztürk, Y.; Anapalı, A.; Gülsu, M. A numerical scheme for continuous population models for single and interacting species. J. Balıkesir Univ. Inst. Sci. Technol. 2017, 19, 12–28. [Google Scholar] [CrossRef]
- Herrero, H.; Mancho, A.M. Numerical modeling in Chebyshev collocation methods applied to stability analysis of convection problems. Appl. Numer. Math. 2000, 33, 161–165. [Google Scholar] [CrossRef]
- Gürbüz, B.; Sezer, M. Modified Laguerre collocation method for solving 1-dimensional parabolic convection-diffusion problems. Math. Method. Appl. Sci. Spec. Issue Pap. 2017. [Google Scholar] [CrossRef]
- Jang, W.; Chen, Z.; Zhang, C. Chebshev collocation method for solving singular integral equation with cosecant kernel. Int. J. Comput. Math. 2012, 89, 975–982. [Google Scholar] [CrossRef]
- Boyd, J.P. Chebyshev and Fourier Spectral Methods. Available online: https://books.google.com.hk/books?hl=en&lr=&id=i9UoAwAAQBAJ&oi=fnd&pg=PP1&dq=Chebyshev+and+fourier+spectral+methods&ots=mCuqRE7G7u&sig=PdpyHdX0wV0ZzUCt1znEvdtFXAs&redir_esc=y&hl=zh-CN&sourceid=cndr#v=onepage&q=Chebyshev%20and%20fourier%20spectral%20methods&f=false (accessed on 22 August 2018).
- Mason, J.C.; Handscomb, D.C. Chebyshev Polynomials. Available online: https://www.crcpress.com/Chebyshev-Polynomials/Mason-Handscomb/p/book/9780849303555 (accessed on 22 August 2018).
t | Exact Solution | N = 5 | Ne = 5 | N = 6 | Ne = 6 | N = 8 | Ne = 8 |
---|---|---|---|---|---|---|---|
0.0 | 1.000000 | 0.999999 | 0.800 × 10−8 | 0.999999 | 0.500 × 10−9 | 1 | 0 |
0.2 | 1.040810 | 1.040834 | 0.238 × 10−4 | 1.040810 | 0.135 × 10−6 | 1.040810 | 0.102 × 10−6 |
0.4 | 1.173510 | 1.173384 | 0.126 × 10−3 | 1.173517 | 0.690 × 10−5 | 1.173510 | 0.261 × 10−6 |
0.6 | 1.433329 | 1.433539 | 0.209 × 10−3 | 1.433298 | 0.305 × 10−4 | 1.433329 | 0.471 × 10-6 |
0.8 | 1.896480 | 1.895792 | 0.688 × 10−2 | 1.896583 | 0.102 × 10−3 | 1.896481 | 0.909 × 10−6 |
1.0 | 2.718281 | 2.686791 | 0.314 × 10−1 | 2.712165 | 0.611 × 10−3 | 2.718083 | 0.197 × 10−3 |
t | Exact Solution | N = 5 | Ne = 5 | N = 6 | Ne = 6 | N = 8 | Ne = 8 |
---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0.2 | −0.0064 | −0.006400 | 0.436 × 10−7 | −0.006400 | 0.189 × 10−9 | −0.00640 | 0.122 × 10−9 |
0.4 | −0.0384 | −0.038399 | 0.343 × 10−6 | −0.038400 | 0.358 × 10−7 | −0.03840 | 0.399 × 10−9 |
0.6 | −0.0864 | −0.086399 | 0.770 × 10−5 | −0.086399 | 0.102 × 10−6 | −0.08640 | 0.138 × 10−8 |
0.8 | −0.1024 | −0.102400 | 0.620 × 10−5 | −0.102400 | 0.259 × 10−6 | −0.10240 | 0.455 × 10−8 |
1.0 | 0.0000 | −0.419×10−4 | 0.419 × 10−4 | −0.722×10−5 | 0.722 × 10−5 | 0.168 × 10−6 | 0.168 × 10−6 |
Present Method | ||||
---|---|---|---|---|
- | ||||
N = 5 | 0.615773 × 10−2 | 101474 × 10−4 | 10−2 | 10−6 |
N = 6 | 0.103500 × 10−2 | 0.148370 × 10−5 | 10−3 | 10−8 |
N = 8 | 0.263404 × 10−4 | 0.256832 × 10−7 | 10−5 | 10−10 |
t | Exact Solution | N = 4 | Ne = 4 | N = 5 | Ne = 5 | N = 6 | Ne = 6 |
---|---|---|---|---|---|---|---|
0.0 | 1.00000 | 1.000000 | 0 | 1.00000 | 0 | 1.00000 | 0 |
0.2 | 1.019803 | 1.020423 | 0.509 × 10−3 | 1.019815 | 0.565 × 10−4 | 1.019803 | 0.756 × 10−5 |
0.4 | 1.077032 | 1.077135 | 0.628 × 10−3 | 1.077064 | 0.216 × 10−4 | 1.077032 | 0.865 × 10−5 |
0.6 | 1.166190 | 1.166724 | 0.277 × 10−3 | 1.166185 | 0.557 × 10−5 | 1.166190 | 0.456 × 10−5 |
0.8 | 1.280624 | 1.280663 | 0.272 × 10−3 | 1.280699 | 0.738 × 10−4 | 1.280624 | 0.771 × 10−5 |
1.0 | 1.414213 | 1.414742 | 0.644 × 10−3 | 1.414217 | 0.746 × 10−4 | 1.414213 | 0.656 × 10−5 |
t | Exact Solution | N = 4 | Ne = 4 | N = 5 | Ne = 5 | N = 6 | Ne = 6 |
---|---|---|---|---|---|---|---|
0.0 | 1.000000 | 1.000000 | 0 | 1.000000 | 0 | 1.000000 | 0 |
0.2 | 0.980580 | 0.980103 | 0.103 × 10−3 | 0.980570 | 0.165 × 10−4 | 0.980580 | 0.659 × 10−5 |
0.4 | 0.928476 | 0.928687 | 0.227 × 10−3 | 0.928466 | 0.151 × 10−4 | 0.928476 | 0.765 × 10−5 |
0.6 | 0.857492 | 0.858961 | 0.100 × 10−3 | 0.857482 | 0.166 × 10−4 | 0.857492 | 0.963 × 10−5 |
0.8 | 0.780868 | 0.781652 | 0.692 × 10−3 | 0.780898 | 0.167 × 10−4 | 0.780868 | 0.865 × 10−5 |
1.0 | 0.707106 | 0.706123 | 0.262 × 10−3 | 0.707146 | 0.608 × 10−4 | 0.707106 | 0.653 × 10−6 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
ÖZTÜRK, Y. Solution for the System of Lane–Emden Type Equations Using Chebyshev Polynomials. Mathematics 2018, 6, 181. https://doi.org/10.3390/math6100181
ÖZTÜRK Y. Solution for the System of Lane–Emden Type Equations Using Chebyshev Polynomials. Mathematics. 2018; 6(10):181. https://doi.org/10.3390/math6100181
Chicago/Turabian StyleÖZTÜRK, Yalçın. 2018. "Solution for the System of Lane–Emden Type Equations Using Chebyshev Polynomials" Mathematics 6, no. 10: 181. https://doi.org/10.3390/math6100181
APA StyleÖZTÜRK, Y. (2018). Solution for the System of Lane–Emden Type Equations Using Chebyshev Polynomials. Mathematics, 6(10), 181. https://doi.org/10.3390/math6100181