Wavelet Neural Network Model for Yield Spread Forecasting
Abstract
:1. Introduction
2. Theoretical Underpinnings of the Relationship between Yield Spread and Future Economic Activity
3. Motivation and Methodology
3.1. Wavelet Transforms
3.2. Choice of Wavelet Families
3.3. Artificial Neural Networks
3.4. Hybrid Wavelet Neural Network Model
- (1)
- Establish the hybrid WNN model for these sub-series, and make the short term prediction for each sub-series.
- (2)
- Calculate the sum of forecasting results of all the sub-series to obtain the final forecasting for original time series.
4. Data, Results and Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
Appendix A
Wavelet Family | Decomposition Level | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
Haar Wavelet | 0.6774 | 0.8435 | 1.0023 | 1.2541 | 1.7372 | 1.804 | 1.9319 |
Db2 | 0.6187 | 0.7156 | 0.8818 | 1.3016 | 1.5234 | 1.557 | 1.7482 |
Db3 | 0.5742 | 0.6979 | 0.8744 | 1.016 | 1.6045 | 1.6404 | 1.8196 |
Db4 | 0.5608 | 0.748 | 0.8285 | 1.2503 | 1.5977 | 1.7154 | 2.0864 |
Db5 | 0.575 | 0.7182 | 0.8763 | 1.1831 | 1.5148 | 1.6667 | 2.2136 |
Db6 | 0.5956 | 0.6985 | 0.8013 | 1.0149 | 1.5921 | 1.631 | 1.9039 |
Db7 | 0.6074 | 0.7468 | 0.8755 | 1.2356 | 1.5967 | 1.6676 | 1.7276 |
Sym2 | 0.6187 | 0.7156 | 0.8818 | 1.3016 | 1.5234 | 1.557 | 1.7482 |
Sym3 | 0.5742 | 0.6979 | 0.8744 | 1.016 | 1.6045 | 1.6404 | 1.8196 |
Sym4 | 0.6024 | 0.7451 | 0.8618 | 1.0137 | 1.5928 | 1.6594 | 1.7888 |
Coif1 | 0.5953 | 0.777 | 0.9053 | 1.0553 | 1.5396 | 1.5842 | 1.6634 |
Coif2 | 0.5912 | 0.7574 | 0.8141 | 1.1058 | 1.6033 | 1.6507 | 1.747 |
Coif3 | 0.5897 | 0.754 | 0.8757 | 1.2489 | 1.595 | 1.6818 | 1.7783 |
Coif4 | 0.5889 | 0.7527 | 0.7973 | 1.1763 | 1.5713 | 1.6942 | 1.8072 |
Coif5 | 0.5886 | 0.7526 | 0.8708 | 1.014 | 1.5551 | 1.6996 | 1.8232 |
Discrete Meyer | 0.5898 | 0.7518 | 0.8596 | 1.0263 | 1.5882 | 1.6507 | 1.8824 |
Time-Scale Level | Time-Frequency |
---|---|
D1 | 2–4 months |
D2 | 4–8 months |
D3 | 8–16 months |
D4 | 16–32 months |
A4 | More than 32 months |
References
- Stock, J.H.; Watson, M.W. New indexes of coincident and leading economic indicators. NBER Macroecon. Annu. 1989, 41, 351–409. [Google Scholar] [CrossRef]
- Estrella, W.; Hardouvelis, G. The term structure as predictor of real activity. J. Finance 1991, 46, 555–576. [Google Scholar] [CrossRef]
- Estrella, W.; Mishkin, F. The predictive power of the term structure of interest rates in Europe and the United States. Eur. Econ. Rev. 1997, 41, 1375–1401. [Google Scholar] [CrossRef]
- Bonser-Neal, C.; Morley, T.R. Does the yield spread predict real economic activity? A multi-country analysis. Econ. Rev. Fed. Reserve Bank Kans. City 1997, 82, 37–53. [Google Scholar]
- Adel, S.; Martin, C.; Heather, J.R.; Jose, A.M. The reaction of stock markets to crashes and events: A comparison study between emerging and mature markets using wavelet transforms. Physica A 2006, 368, 511–521. [Google Scholar] [Green Version]
- Bordo, M.D.; Haubrich, J.G. Forecasting with the yield curve, level, slope, and output. Econ. Lett. 2008, 99, 48–50. [Google Scholar] [CrossRef]
- Stock, J.H.; Watson, M.W. Forecasting output and inflation: The role of asset prices. J. Econ. Lit. 2003, 41, 788–829. [Google Scholar] [CrossRef]
- Tabak, B.M.; Feitosa, M.A. An analysis of the yield spread as a predictor of inflation in Brazil: Evidence from a wavelets approach. Expert Syst. Appl. 2009, 36, 7129–7134. [Google Scholar] [CrossRef]
- Tabak, B.M.; Feitosa, M.A. Forecasting industrial production in Brazil: Evidence from a wavelets approach. Expert Syst. Appl. 2010, 37, 6345–6351. [Google Scholar] [CrossRef]
- Kim, A.; Limpaphayom, P. The effect of economic regimes on the relation between term structure and real activity in Japan. J. Econ. Bus. 1997, 9, 379–392. [Google Scholar] [CrossRef]
- Jardet, C. Why did the term structure of interest rates lose its predictive power? Econ. Model. 2004, 219, 509–524. [Google Scholar] [CrossRef]
- Tkacz, G. Inflation changes, yield spreads, and threshold effects. Int. Rev. Econ. Finance 2004, 13, 187–199. [Google Scholar] [CrossRef]
- Nakaota, H. The term structure of interest rates in Japan: The predictability of economic activity. Jpn. World Econ. 2005, 17, 311–326. [Google Scholar] [CrossRef]
- Rosenberg, J.V.; Maurer, S. Signal or noise? Implications of the term premium for recession forecasting. Fed. Reserve Bank N. Y. Econ. Policy Rev. 2008, 14, 1–11. [Google Scholar]
- Kanagasabapathy, K.; Goyal, R. Yield Spread as a Leading Indicator of Real Economic Activity: An Empirical Exercise on the Indian Economy. 2002. Available online: https://www.imf.org/en/Publications/WP/Issues/2016/12/30/Yield-Spread-as-a-Leading-Indicator-of-Real-Economic-Activity-An-Empirical-Exercise-on-the-15819 (accessed on 28 September 2017).
- Bhaduri, S.; Saraogi, R. The predictive power of the yield spread in timing the stock market. Emerg. Mark. Rev. 2010, 11, 261–272. [Google Scholar] [CrossRef]
- Dar, A.B.; Samantaraya, A.; Shah, F.A. The predictive power of yield spread: Evidence. Empir. Econ. 2014, 46, 887–901. [Google Scholar] [CrossRef]
- Vieira, F.; Fernandes, M.; Chague, F. Forecasting the Brazilian curve using forward-looking variables. Int. J. Forecast. 2017, 33, 121–131. [Google Scholar] [CrossRef]
- Ang, A.; Piazzesi, M.; Wei, M. What does the yield curve tell us about GDP growth? J. Econ. 2006, 131, 359–403. [Google Scholar] [CrossRef]
- Wheelock, D.; Wohar, M.E. Can the term spread predict output growth and recessions? A survey of the literature. Fed. Reserve Bank St. Louis Rev. 2009, 419, 1–22. [Google Scholar]
- Harvey, C.R. The real term structure and consumption growth. J. Financ. Econ. 1988, 22, 305–333. [Google Scholar] [CrossRef]
- Tkacz, G. Neural network forecasting of Canadian GDP growth. Int. J. Forecast. 2001, 17, 57–69. [Google Scholar] [CrossRef]
- Moshiri, S.; Cameron, N. Econometrics versus ANN models in forecasting inflation. J. Forecast. 2000, 19, 201–217. [Google Scholar] [CrossRef]
- Aguiar-Conraria, L.; Azevedo, N.; Soares, M.J. Using wavelets to decompose the time-frequency effects of monetary policy. Physica A 2008, 387, 2863–2878. [Google Scholar] [CrossRef] [Green Version]
- Zagaglia, P. Does the Yield Spread Predict the Output Gap in the US? Working Paper; Stockholm University: Stockholm, Sweden, 2006. [Google Scholar]
- Dar, A.B.; Shah, F.A. In search of leading indicator property of yield spread for India: An approach based on quantile and wavelet regression. Econ. Res. Int. 2015, 2015, 308567. [Google Scholar] [CrossRef]
- Debnath, L.; Shah, F.A. Wavelet Transforms and Their Applications; Birkhauser: New York, NY, USA, 2015. [Google Scholar]
- Mallat, S.G. Multiresolution approximations and wavelet orthonormal bases of . Tran. Am. Math. Soc. 1986, 315, 69–87. [Google Scholar] [CrossRef]
- Mallat, S.G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–693. [Google Scholar] [CrossRef]
- Perciva, D.B.; Walden, A.T. Wavelet Methods for Time Series Analysis; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Gençay, R.; Selçuk, F.; Whitcher, B. An Introduction to Wavelets and Other Filtering Methods in Finance and Economics; Academic Press: San Diego, CA, USA, 2002. [Google Scholar]
- Zhang, G.; Patuw, B.E.; Hu, M. Forecasting with artificial neural networks: The state of the art. Int. J. Forecast. 1998, 14, 35–62. [Google Scholar] [CrossRef]
- Bishop, M. Neural Networks for Pattern Recognition; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Haykin, S. Neural Networks: A Comprehensive Foundation; Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Minu, K.K.; Lineesh, M.C.; Jess, J.C. Wavelet neural networks for nonlinear time series analysis. Appl. Math. Sci. 2010, 4, 2485–2595. [Google Scholar]
- Murtagh, F.; Starck, J.L.; Renaud, O. On neuro-wavelet modelling. Decis. Support Syst. 2004, 37, 475–484. [Google Scholar] [CrossRef]
- Renaud, O.; Stark, J.L.; Murtagh, F. Prediction based on a multiscale decomposition. Int. J. Wavelets Multiresolut. Inf. Process. 2003, 1, 217–232. [Google Scholar] [CrossRef]
- Ortega, L.; Khashanah, K. A neuro-wavelet model for short-term forecasting of high frequency time series of stock returns. J. Forecast. 2014, 33, 134–146. [Google Scholar] [CrossRef]
- Pir, M.Y.; Shah, F.A.; Asgar, M. Using wavelet neural network to forecast IIP growth with yield spreads. IPASJ Int. J. Comput. Sci. 2014, 2, 31–36. [Google Scholar]
- Zhang, Q.H.; Benveniste, A. Wavelet networks. IEEE Trans. Neural Netw. 1992, 3, 889–898. [Google Scholar] [CrossRef] [PubMed]
Wavelet Family | Sp (1, 3) | Sp (5, 3) | Sp (10, 3) | Sp (10, 5) | Sp (10, 8) |
---|---|---|---|---|---|
Haar Wavelet | 0.155 | 0.145 | 0.110 | 0.185 | 0.188 |
Db2 | 0.159 | 0.151 | 0.117 | 0.189 | 0.228 |
Db3 | 0.146 | 0.320 | 0.110 | 0.186 | 0.206 |
Db4 | 0.135 | 0.106 | 0.0932 | 0.140 | 0.178 |
Db5 | 0.150 | 0.295 | 0.120 | 0.191 | 0.220 |
Db6 | 0.183 | 0.360 | 0.295 | 0.215 | 0.268 |
Db7 | 0.196 | 0.401 | 0.307 | 0.329 | 0.294 |
Sym2 | 0.201 | 0.228 | 0.187 | 0.297 | 0.268 |
Sym3 | 0.154 | 0.153 | 0.125 | 0.180 | 0.187 |
Sym4 | 0.164 | 0.296 | 0.194 | 0.292 | 0.320 |
Coif1 | 0.192 | 0.283 | 0.295 | 0.306 | 0.390 |
Coif2 | 0.186 | 0.270 | 0.212 | 0.321 | 0.364 |
Coif3 | 0.179 | 0.208 | 0.167 | 0.239 | 0.308 |
Coif4 | 0.168 | 0.160 | 0.158 | 0.198 | 0.296 |
Coif5 | 0.153 | 0.143 | 0.138 | 0.175 | 0.180 |
Discrete Meyer | 0.162 | 0.148 | 0.143 | 0.181 | 0.194 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, F.A.; Debnath, L. Wavelet Neural Network Model for Yield Spread Forecasting. Mathematics 2017, 5, 72. https://doi.org/10.3390/math5040072
Shah FA, Debnath L. Wavelet Neural Network Model for Yield Spread Forecasting. Mathematics. 2017; 5(4):72. https://doi.org/10.3390/math5040072
Chicago/Turabian StyleShah, Firdous Ahmad, and Lokenath Debnath. 2017. "Wavelet Neural Network Model for Yield Spread Forecasting" Mathematics 5, no. 4: 72. https://doi.org/10.3390/math5040072
APA StyleShah, F. A., & Debnath, L. (2017). Wavelet Neural Network Model for Yield Spread Forecasting. Mathematics, 5(4), 72. https://doi.org/10.3390/math5040072