On the Essential Decreasing of the Summation Order in the Abel-Lidskii Sense
Abstract
:1. Introduction
1.1. Historical Review
1.2. Preliminaries
2. Overview of the Supplementary Results
2.1. Characteristic Determinant
2.2. Abel-Lidskii Series Expansion
3. Main Results
3.1. Splitting to the Infinite Set of the Invariant Subspaces
3.2. Splitting of the Counting Function
3.3. Sharper Estimate for the Canonical Product
3.4. Infinitesimalness of the Summation Order
3.5. Supplementary Remarks and Mathematical Applications
3.5.1. Evolution Equations
3.5.2. Spectral Asymptotics for Fractional-Differential and Pseudo-Differential Operators
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sadovnichii, V.A. Theory of Operators; Monographs in Contemporary Mathematics; Springer: New York, NY, USA, 1991. [Google Scholar]
- Lidskii, V.B. Summability of series in terms of the principal vectors of non-selfadjoint operators. Tr. Mosk. Mat. Obs. 1962, 11, 3–35. [Google Scholar]
- Krein, M.G. Criteria for completeness of the system of root vectors of a dissipative operator. In American Mathematical Society Translations: Series 2; American Mathematical Society: Providence, RI, USA, 1963; Volume 26, pp. 221–229. [Google Scholar]
- Lidskii, V.B. Conditions for completeness of a system of root subspaces for non-selfadjoint operators with discrete spectra. In American Mathematical Society Translations: Series 2; American Mathematical Society: Providence, RI, USA, 1963; Volume 34, pp. 241–281. [Google Scholar]
- Keldysh, M.V. On eigenvalues and eigenfunctions of some classes of non-selfadjoint equations. Dokl. Akad. Nauk. SSSR 1951, 77, 11–14. [Google Scholar]
- Lidskii, V.B. Theorems on the completeness of a system of characteristic and adjoined elements of operators having a discrete spectrum. Dokl. Akad. Nauk SSSR 1958, 119, 1088–1091. [Google Scholar]
- Lidskii, V.B. Non-selfadjoint operators with a trace. Dokl. Akad. Nauk SSSR 1959, 125, 485–487. [Google Scholar]
- Sakhnovich, L.A. A study of the triangular form of non-selfadjoint operators. Izv. Vyss. Uchebnykh Zaved. Mat. 1959, 4, 141–149. [Google Scholar]
- Markus, A.S. On the basis of root vectors of a dissipative operator. Soviet Math. Dokl. 1960, 1, 599–602. [Google Scholar]
- Markus, A.S. Expansion in root vectors of a slightly perturbed selfadjoint operator. Sov. Math. Dokl. 1962, 3, 104–108. [Google Scholar]
- Lidskii, V.B. Summation of series over the main vectors of non-selfadjoined operators. Sov. Math. Dokl. 1960, 132, 275–278. [Google Scholar]
- Hardy, G.H. Divergent Series; Oxford University Press, Ely House: London, UK, 1949. [Google Scholar]
- Markus, A.S. Certain criteria for the completeness of a system of root vectors of a linear operator in a Banach space. Mat. Sb. Novaya Seriya 1966, 70, 526–561. [Google Scholar]
- Agranovich, M.S. Summability of series in root vectors of non-selfadjoint elliptic operators. Funct. Anal. Appl. 1976, 10, 165–174. [Google Scholar]
- Markus, A.S.; Matsaev, V.I. Operators generated by sesquilinear forms and their spectral asymptotics. Linear Oper. Integral Equ. Mat. Issled. Stiintsa Kishinev 1981, 61, 86–103. [Google Scholar]
- Markus, A.S.; Matsaev, V.I. On the convergence of the root vector series for operators close to selfadjoint ones. Linear Oper. Integral Equ. Mat. Issled. Stiintsa Kishinev 1981, 61, 103–129. [Google Scholar]
- Motovilov, A.K.; Shkalikov, A.A. Preserving of the unconditional basis property under non-self-adjoint perturbations of self-adjoint operators. Funktsional. Anal. Prilozhen. 2019, 53, 45–60. [Google Scholar] [CrossRef]
- Shkalikov, A.A. Perturbations of selfadjoint and normal operators with a discrete spectrum. Russ. Math. Surv. 2016, 71, 113–174. [Google Scholar] [CrossRef]
- Lidskii, V.B. On the Fourier series expansion on the major vectors of a non-selfadjoint elliptic operator. Tr. Mosk. Mat. Obs. 1962, 57, 137–150. (In Russian) [Google Scholar]
- Katsnelson, V.E. Convergence and Summability of Series in the Root Vectors of Certain Classes of Non-Selfadjoint Operators. Ph.D. Thesis, Kharkiv State University, Kharkiv, Ukraine, 1967. (In Russian). [Google Scholar]
- Agranovich, M.S.; Katsenelenbaum, B.Z.; Sivov, A.N.; Voitovich, N.N. Generalized Method of Eigenoscillations in the Diffraction Theory; Zbl 0929.65097; Wiley-VCH: Weinheim, Germany, 1999. [Google Scholar]
- Shkalikov, A.A. Estimates of meromorphic functions and summability theorems. Pac. J. Math. 1982, 103, 569–582. [Google Scholar] [CrossRef]
- Shkalikov, A.A. On estimates of meromorphic functions and summation of series in the root vectors of nonselfadjoint operators. Sov. Math. Dokl. 1983, 27, 259–263. [Google Scholar]
- Agranovich, M.S. On series with respect to root vectors of operators associated with forms having symmetric principal part. Funct. Anal. Its Appl. 1994, 28, 151–167. [Google Scholar] [CrossRef]
- Kukushkin, M.V. Natural lacunae method and Schatten-von Neumann classes of the convergence exponent. Mathematics 2022, 10, 2237. [Google Scholar] [CrossRef]
- Katsnelson, V.E. Conditions under which systems of eigenvectors of some classes of operators form a basis. Funct. Anal. Appl. 1967, 1, 122–132. [Google Scholar] [CrossRef]
- Kukushkin, M.V. On One Method of Studying Spectral Properties of Non-Selfadjoint Operators. In Abstract and Applied Analysis; Hindawi: London, UK, 2020. [Google Scholar] [CrossRef]
- Kukushkin, M.V. Asymptotics of eigenvalues for differential operators of fractional order. Fract. Calc. Appl. Anal. 2019, 22, 658–681. [Google Scholar] [CrossRef]
- Kukushkin, M.V. Abstract fractional calculus for m-accretive operators. arXiv 2021, arXiv:1901.06118. [Google Scholar] [CrossRef]
- Bazhlekova, E. The abstract Cauchy problem for the fractional evolution equation. Fract. Calc. Appl. Anal. 1998, 1, 255–270. [Google Scholar]
- Bazhlekova, E. Fractional Evolution Equations in Banach Spaces; Technische Universiteit Eindhoven: Eindhoven, The Netherlands, 2001. [Google Scholar] [CrossRef]
- Kukushkin, M.V. Evolution Equations in Hilbert Spaces via the Lacunae Method. Fractal Fract. 2022, 6, 229. [Google Scholar] [CrossRef]
- Kukushkin, M.V. Abstract Evolution Equations with an Operator Function in the Second Term. Axioms 2022, 11, 434. [Google Scholar] [CrossRef]
- Kato, T. Perturbation Theory for Linear Operators; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1980. [Google Scholar]
- Braichev, G.G. Exact relationships between certain characteristics of growth for complex sequences. Ufa Math. J. 2013, 5, 16–29. [Google Scholar] [CrossRef]
- Gohberg, I.C.; Krein, M.G. Introduction to the Theory of Linear Non-Selfadjoint Operators in a Hilbert Space; Nauka, Fizmatlit: Moscow, Russia, 1965. [Google Scholar]
- Levin, B.J. Distribution of Zeros of Entire Functions; Translations of Mathematical Monographs; American Mathematical Society: Providence, RI, USA, 1964. [Google Scholar]
- Levin, B.J. Lectures on Entire Functions; Translations of Mathematical Monographs; American Mathematical Society: Providence, RI, USA, 1991. [Google Scholar]
- Von Koch, H. Sur la convergence des determinants infinies. Rend. Circ. Mat. Palermo 1909, 28, 255–266. [Google Scholar] [CrossRef]
- Riesz, F.; Nagy, B.S. Functional Analysis; Ungar: New York, NY, USA, 1955. [Google Scholar]
- Courant, R.; Hilbert, D. Methods of Mathematical Physics; Gostekhizdat: Moscow, Russia, 1951. [Google Scholar]
- Kukushkin, M.V. Cauchy Problem for an Abstract Evolution Equation of Fractional Order. Fractal Fract. 2023, 7, 111. [Google Scholar] [CrossRef]
- Krasnoselskii, M.A.; Zabreiko, P.P.; Pustylnik, E.I.; Sobolevskii, P.E. Integral Operators in the Spaces of Summable Functions; Science, Fizmatlit: Moscow, Russia, 1966. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Philadelphia, PA, USA, 1993. [Google Scholar]
- Rozenblyum, G.V.; Solomyak, M.Z.; Shubin, M.A. Spectral Theory of Differential Operators; Results of Science and Technology. Series Modern Problems of Mathematics Fundamental Directions; Oxford University Press: Oxford, UK, 1989; Volume 64, pp. 5–242. [Google Scholar]
- Duistermaat, L.J.; Guillemin, V. The spectrum of positive elliptic operators and periodic bicharacterisitids. Invent. Math. 1975, 29, 39–79. [Google Scholar] [CrossRef]
- Agranovich, M.S. Elliptic operators on closed manifolds. In Partial Differential Equations VI. Encyclopaedia of Mathematical Sciences; Springer: Berlin/Heidelberg, Germany, 1990; Volume 63, pp. 5–129. [Google Scholar]
- Savin, A.V. Asymptotic expansion of the density of states for one-dimensional Schrodinger and Dirac operators with almost periodic and random potentials. In Collection of Scientific Papers. IFTP. M.; Springer: Berlin/Heidelberg, Germany, 1988. (In Russian) [Google Scholar]
- Kukushkin, M.V. Schatten Index of the Sectorial Operator via the Real Component of Its Inverse. Mathematics 2024, 12, 540. [Google Scholar] [CrossRef]
- Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations; Applied Mathematical Sciences; Springer: Berlin/Heidelberg, Germany; New York, NY, USA; Tokyo, Japan, 1983; Volume 44. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kukushkin, M.V. On the Essential Decreasing of the Summation Order in the Abel-Lidskii Sense. Mathematics 2025, 13, 1205. https://doi.org/10.3390/math13071205
Kukushkin MV. On the Essential Decreasing of the Summation Order in the Abel-Lidskii Sense. Mathematics. 2025; 13(7):1205. https://doi.org/10.3390/math13071205
Chicago/Turabian StyleKukushkin, Maksim V. 2025. "On the Essential Decreasing of the Summation Order in the Abel-Lidskii Sense" Mathematics 13, no. 7: 1205. https://doi.org/10.3390/math13071205
APA StyleKukushkin, M. V. (2025). On the Essential Decreasing of the Summation Order in the Abel-Lidskii Sense. Mathematics, 13(7), 1205. https://doi.org/10.3390/math13071205