The Inverse Scattering of Three-Dimensional Inhomogeneous Steady-State Sound Field Models
Abstract
:1. Introduction
2. Three-Dimensional Inhomogeneous Anisotropic Steady-State Sound Field
2.1. Mathematical Model of the Three-Dimensional Inhomogeneous Anisotropic Steady-State Sound Field
2.2. Solution to the Three-Dimensional Inhomogeneous Anisotropic Steady-State Sound Field Problem
3. U-Net Based Regression Network for Sliced Data
4. Numerical Examples and Results
4.1. Example 1
4.2. Example 2
4.3. Example 3
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarvazyan, A.P.; Urban, M.W.; Greenleaf, J.F. Acoustic waves in medical imaging and diagnostics. Ultrasound Med. Biol. 2013, 39, 1133–1146. [Google Scholar] [CrossRef] [PubMed]
- Nadimi, N.; Javidan, R.; Layeghi, K. Efficient detection of underwater natural gas pipeline leak based on synthetic aperture sonar (SAS) systems. J. Mar. Sci. Eng. 2021, 9, 1273. [Google Scholar] [CrossRef]
- Cosarinsky, G.; Fernandez-Cruza, J.; Camacho, J. Plane wave imaging through interfaces. Sensors 2021, 21, 4967. [Google Scholar] [CrossRef]
- Li, F.; Villa, U.; Duric, N.; Anastasio, M.A. 3D full-waveform inversion in ultrasound computed tomography employing a ring-array. In Medical Imaging 2023: Ultrasonic Imaging and Tomography; SPIE: Bellingham, WC, USA, 2023; Volume 12470, pp. 99–104. [Google Scholar]
- Dommergues, B.; Cruz, E.; Vaz, G. Optimization of underwater acoustic detection of marine mammals and ships using CNN. In Proceedings of Meetings on Acoustics; AIP Publishing: Melville, NY, USA, 2022; Volume 47, p. 1. [Google Scholar]
- Pierri, R.; Leone, G. Inverse scattering of dielectric cylinders by a second-order Born approximation. IEEE Trans. Geosci. Remote Sens. 1999, 37, 374–382. [Google Scholar]
- Gao, G.; Torres-Verdin, C. High-order generalized extended Born approximation for electromagnetic scattering. IEEE Trans. Antennas Propag. 2006, 54, 1243–1256. [Google Scholar]
- Dubey, A.; Chen, X.; Murch, R. A new correction to the Rytov approximation for strongly scattering lossy media. IEEE Trans. Antennas Propag. 2022, 70, 10851–10864. [Google Scholar]
- Yin, T.; Pan, L.; Chen, X. Subspace-Rytov approximation inversion method for inverse scattering problems. IEEE Trans. Antennas Propag. 2022, 70, 10925–10935. [Google Scholar] [CrossRef]
- Yin, T.; Pan, L.; Chen, X. Subspace-based distorted-Rytov iterative method for solving inverse scattering problems. IEEE Trans. Antennas Propag. 2023, 71, 8173–8183. [Google Scholar]
- De Zaeytijd, J.; Franchois, A.; Eyraud, C.; Geffrin, J.-M. Full-wave three-dimensional microwave imaging with a regularized Gauss–Newton method—Theory and experiment. IEEE Trans. Antennas Propag. 2007, 55, 3279–3292. [Google Scholar]
- Üregen, E.; Yapar, A. Focusing-Based Newton Solution for Electromagnetic Inverse Scattering Problems. IEEE Trans. Antennas Propag. 2024; in press. [Google Scholar]
- Mojabi, P.; LoVetri, J. Comparison of TE and TM inversions in the framework of the Gauss–Newton method. IEEE Trans. Antennas Propag. 2010, 58, 1336–1348. [Google Scholar] [CrossRef]
- Yaswanth, K.; Bhattacharya, S.; Khankhoje, U.K. Algebraic reconstruction techniques for inverse imaging. In Proceedings of the 2016 International Conference on Electromagnetics in Advanced Applications (ICEAA), Cairns, QLD, Australia, 19–23 September 2016; pp. 756–759. [Google Scholar]
- Bagci, H.; Raich, R.; Hero, A.E.; Michielssen, E. Sparsity-regularized Born iterations for electromagnetic inverse scattering. In Proceedings of the 2008 IEEE Antennas and Propagation Society International Symposium, San Diego, CA, USA, 5–11 July 2008; pp. 1–4. [Google Scholar]
- Lechleiter, A.; Rennoch, M. Non-linear Tikhonov regularization in Banach spaces for inverse scattering from anisotropic penetrable media. Inverse Probl. Imaging 2017, 11, 151–176. [Google Scholar] [CrossRef]
- Kamilov, U.S.; Liu, D.; Mansour, H.; Boufounos, P.T. A recursive Born approach to nonlinear inverse scattering. IEEE Signal Process. Lett. 2016, 23, 1052–1056. [Google Scholar] [CrossRef]
- Li, L.; Wang, L.G.; Teixeira, F.L. Performance analysis and dynamic evolution of deep convolutional neural network for electromagnetic inverse scattering. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2259–2263. [Google Scholar] [CrossRef]
- Wei, Z.; Chen, X. Physics-inspired convolutional neural network for solving full-wave inverse scattering problems. IEEE Trans. Antennas Propag. 2019, 67, 6138–6148. [Google Scholar] [CrossRef]
- Xiao, J.; Li, J.; Chen, Y.; Han, F.; Liu, Q.H. Fast electromagnetic inversion of inhomogeneous scatterers embedded in layered media by Born approximation and 3-D U-Net. IEEE Geosci. Remote Sens. Lett. 2019, 17, 1677–1681. [Google Scholar] [CrossRef]
- Li, H.; Chen, L.; Qiu, J. Convolutional neural networks for multifrequency electromagnetic inverse problems. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 1424–1428. [Google Scholar] [CrossRef]
- Xu, K.; Zhang, C.; Ye, X.; Song, R. Fast full-wave electromagnetic inverse scattering based on scalable cascaded convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2021, 60, 2001611. [Google Scholar] [CrossRef]
- Aydın, İ.; Budak, G.; Sefer, A.; Yapar, A. CNN-based deep learning architecture for electromagnetic imaging of rough surface profiles. IEEE Trans. Antennas Propag. 2022, 70, 9752–9763. [Google Scholar] [CrossRef]
- Zhang, Y.; Lambert, M.; Fraysse, A.; Lesselier, D. Unrolled convolutional neural network for full-wave inverse scattering. IEEE Trans. Antennas Propag. 2022, 71, 947–956. [Google Scholar] [CrossRef]
- Barmada, S.; Di Barba, P.; Fontana, N.; Mognaschi, M.E.; Tucci, M. Electromagnetic field reconstruction and source identification using conditional variational autoencoder and CNN. IEEE J. Multiscale Multiphysics Comput. Tech. 2023, 8, 322–331. [Google Scholar] [CrossRef]
- Puzyrev, V. Deep learning electromagnetic inversion with convolutional neural networks. Geophys. J. Int. 2019, 218, 817–832. [Google Scholar] [CrossRef]
- Yao, H.M.; Jiang, L.; Wei, E.I. Enhanced deep learning approach based on the deep convolutional encoder–decoder architecture for electromagnetic inverse scattering problems. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1211–1215. [Google Scholar] [CrossRef]
- Ye, X.; Bai, Y.; Song, R.; Xu, K.; An, J. An inhomogeneous background imaging method based on generative adversarial network. IEEE Trans. Microw. Theory Tech. 2020, 68, 4684–4693. [Google Scholar] [CrossRef]
- Song, R.; Huang, Y.; Xu, K.; Ye, X.; Li, C.; Chen, X. Electromagnetic inverse scattering with perceptual generative adversarial networks. IEEE Trans. Comput. Imaging 2021, 7, 689–699. [Google Scholar] [CrossRef]
- Hu, Y.D.; Wang, X.H.; Zhou, H.; Wang, L.; Wang, B.Z. A more general electromagnetic inverse scattering method based on physics-informed neural network. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4505109. [Google Scholar] [CrossRef]
Channel 1 | Channel 2 | Channel 3 | Channel 4 | Channel 5 | Channel 6 | |
---|---|---|---|---|---|---|
MSE | 0.0067 | 0.0041 | 0.0022 | 0.0001 | 0.0002 | 0.0001 |
SSIM | 0.9972 | 0.9992 | 0.9997 | 0.9869 | 0.9933 | 0.9920 |
PSNR (dB) | 38.67 | 40.83 | 43.46 | 48.38 | 43.10 | 42.89 |
Channel 1 | Channel 2 | Channel 3 | Channel 4 | Channel 5 | Channel 6 | |
---|---|---|---|---|---|---|
MSE | 0.0097 | 0.0003 | 0.0097 | 0.0003 | 0.0097 | 0.0003 |
NMSE | 0.0096 | 0.0009 | 0.0096 | 0.0009 | 0.0003 | 0.0009 |
SSIM | 0.9680 | 0.9886 | 0.9680 | 0.9887 | 0.9680 | 0.9886 |
Channel 1 | Channel 2 | Channel 3 | Channel 4 | Channel 5 | Channel 6 | |
---|---|---|---|---|---|---|
MSE | 0.0171 | 0.0050 | 0.0043 | 0.0005 | 0.0009 | 0.0004 |
SSIM | 0.9809 | 0.9896 | 0.9898 | 0.9953 | 0.9833 | 0.9931 |
PSNR (dB) | 31.02 | 36.27 | 36.93 | 38.88 | 34.09 | 39.42 |
Channel 1 | Channel 2 | Channel 3 | Channel 4 | Channel 5 | Channel 6 | |
---|---|---|---|---|---|---|
MSE | 0.0164 | 0.0016 | 0.0195 | 0.0013 | 0.0159 | 0.0014 |
NMSE | 0.0064 | 0.0051 | 0.0071 | 0.0045 | 0.0063 | 0.0048 |
SSIM | 0.9813 | 0.9761 | 0.9827 | 0.9819 | 0.9820 | 0.9683 |
Channel 1 | Channel 2 | Channel 3 | Channel 4 | Channel 5 | Channel 6 | |
---|---|---|---|---|---|---|
MSE | 0.0011 | 0.0154 | 0.0204 | 0.0082 | 0.0052 | 0.0302 |
SSIM | 0.9996 | 0.9966 | 0.9954 | 0.9972 | 0.9957 | 0.9902 |
PSNR (dB) | 44.40 | 33.06 | 31.86 | 31.94 | 34.00 | 26.26 |
Channel 1 | Channel 2 | Channel 3 | Channel 4 | Channel 5 | Channel 6 | |
---|---|---|---|---|---|---|
MSE | 0.0037 | 0.0036 | 0.0060 | 0.0053 | 0.0060 | 0.0053 |
NMSE | 0.0022 | 0.0058 | 0.0024 | 0.0056 | 0.0024 | 0.0056 |
SSIM | 0.9981 | 0.9958 | 0.9919 | 0.9871 | 0.9919 | 0.9871 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Zhang, W.; Zhao, M. The Inverse Scattering of Three-Dimensional Inhomogeneous Steady-State Sound Field Models. Mathematics 2025, 13, 1187. https://doi.org/10.3390/math13071187
Sun Z, Zhang W, Zhao M. The Inverse Scattering of Three-Dimensional Inhomogeneous Steady-State Sound Field Models. Mathematics. 2025; 13(7):1187. https://doi.org/10.3390/math13071187
Chicago/Turabian StyleSun, Zhaoxi, Wenbin Zhang, and Meiling Zhao. 2025. "The Inverse Scattering of Three-Dimensional Inhomogeneous Steady-State Sound Field Models" Mathematics 13, no. 7: 1187. https://doi.org/10.3390/math13071187
APA StyleSun, Z., Zhang, W., & Zhao, M. (2025). The Inverse Scattering of Three-Dimensional Inhomogeneous Steady-State Sound Field Models. Mathematics, 13(7), 1187. https://doi.org/10.3390/math13071187