Synergistic Joint Model of Knowledge Graph and LLM for Enhancing XAI-Based Clinical Decision Support Systems
Abstract
:1. Introduction
- Development of a Synergistic Joint Model: Proposes a joint model that addresses the limitations of LLMs and KGs, enhancing explainability and mitigating hallucinations for reliable use in the medical field;
- Improved CDSS Performance: Demonstrates enhanced performance in clinical tasks like mental health detection and emotion classification, supporting diagnosis and treatment processes;
- Scalability and Adaptability: Establishes a scalable and adaptive system capable of dynamically incorporating new knowledge, making it applicable to various domains.
2. Related Work
2.1. Clinical Decision Support System (CDSS)
2.1.1. Evolution of CDSSs and Key Features
2.1.2. Converging CDSSs and AI
2.1.3. Limitations of Traditional CDSSs
2.2. Integrating LLMs with KGs
2.2.1. KG-Enhanced LLMs
Research (Author, Year) | KG–LLM Integration Type | Application Domain | Knowledge Utilization | Primary Model | Explainability Features |
---|---|---|---|---|---|
K-BERT (2020) [19] | KG-enhanced LLM | NLP | Pre-training with KG | BERT + ConceptNet | |
ERNIE (2021) [20] | KG-enhanced LLM | NLP | Pre-training with KG | BERT + Domain KG | |
RAG (2020) [21] | KG-enhanced LLM | Healthcare/NLP | Retrieval-augmented generation | T5 + OpenKG | |
KEPLER (2021) [22] | KG-enhanced LLM | KG completion | KG-structured fine-tuning | BERT + KG embeddings | |
Gao et al. (2023) [8] | KG-enhanced LLM | Clinical diagnosis | KG-guided fine-tuning | LLM + UMLS | √ |
Remy et al. (2023) [23] | KG-enhanced LLM | Biomedical NLP | Pre-training with KG | BioLORD-2023 | √ |
Yang et al. (2024) [24] | KG-enhanced LLM | Medical QA | KG-based retrieval and ranking | KG-Rank | |
COMET (2019) [25] | LLM-augmented KG | Commonsense reasoning | KG expansion using GPT | GPT-2 + Commonsense KG | |
ATOMIC (2019) [26] | LLM-augmented KG | Causal reasoning | Causal knowledge extraction | GPT-2 + Event-Based KG | |
BERT-KGQA (2020) [27] | LLM-augmented KG | KGQA | KG-driven question answering | BERT + Knowledge Integration | √ |
KG-BERT (2020) [28] | LLM-augmented KG | KG completion | KG textual representation learning | BERT | |
Jia et al. (2024) [29] | Joint optimization | Clinical decision support | KG–LLM integration | MedIKAL | √ |
Zuo et al. (2024) [30] | Joint optimization | Medical diagnosis | Automated KG construction | KG4Diagnosis | √ |
2.2.2. LLM-Augmented KGs
2.2.3. Joint Optimization Models
3. Proposed Method
3.1. Structure of the Proposed Method
3.2. Layers That Comprise the Joint Model
3.2.1. Notation
3.2.2. Sub-Graph Extraction Layer
3.2.3. Graph Expansion Layer
- The prompts are structured to include the following elements:
- Text Conversion: Converts the target text to lowercase and replaces spaces with underscores to ensure a consistent format;
- Keyword Processing: Standardizes all keywords and intermediary terms to maintain uniformity in the model’s input, enabling the accurate recognition of key elements within the text;
- I have checked and revised all.
- Triple Format Validation: Uses regular expressions to ensure that the extracted triples follow the correct (subject, relation, object) structure. This step prevents incorrectly formatted triples from being added to the KG;
- Format Consistency Handling: Triples that pass the format validation are converted into a list and stored. If a triple string contains errors or does not match the expected format, the GPT-3.5-turbo-instruct model is called again to refine and standardize the format;
- Final Validation and Storage: The refined triples are stored in a data frame for each index and prepared for integration into the KG. Errors and malformed data are automatically handled in this step, minimizing inconsistencies.
3.2.4. Triple Scoring Layer
3.2.5. Concat Layer
4. Evaluation
4.1. Dataset
4.2. Experiment Setups
4.3. Experiment and Results
4.4. Ablation Study
4.5. Analysis of Knowledge Noise
5. Applications and Discussions
5.1. CDSS Applications
5.1.1. Disease Detection
5.1.2. Beside Decision Support
5.1.3. Treatment and Prescription
5.1.4. Clinical Practice
5.2. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khalifa, M. Clinical Decision Support: Strategies for Success. Procedia Comput. Sci. 2014, 37, 422–427. [Google Scholar] [CrossRef]
- Wang, D.; Wang, L.; Zhang, Z.; Wang, D.; Zhu, H.; Gao, Y.; Fan, X.; Tian, F. “Brilliant AI Doctor” in Rural Clinics: Challenges in AI-Powered Clinical Decision Support System Deployment. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 8–13 May 2021; pp. 1–18. [Google Scholar] [CrossRef]
- Dang, L.D.; Phan, U.T.P.; Nguyen, N.T.H. GENA: A Knowledge Graph for Nutrition and Mental Health. J. Biomed. Inform. 2023, 145, 104460. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, F.; Gu, B.; Zou, X.; Huang, J.; Wu, J.; Li, Y.; Chen, S.S.; Zhou, P.; Liu, J.; et al. A Survey of Large Language Models in Medicine: Progress, Application, and Challenge. arXiv 2024, arXiv:2311.05112. [Google Scholar] [CrossRef]
- Chao, P.; Robey, A.; Dobriban, E.; Hassani, H.; Pappas, G.J.; Wong, E. Jailbreaking Black Box Large Language Models in Twenty Queries. arXiv 2024, arXiv:2310.08419. [Google Scholar] [CrossRef]
- Pan, S.; Luo, L.; Wang, Y.; Chen, C.; Wang, J.; Wu, X. Unifying Large Language Models and Knowledge Graphs: A Roadmap. IEEE Trans. Knowl. Data Eng. 2024, 36, 3580–3599. [Google Scholar] [CrossRef]
- Bahr, L.; Wehner, C.; Wewerka, J.; Bittencourt, J.; Schmid, U.; Daub, R. Knowledge Graph Enhanced Retrieval-Augmented Generation for Failure Mode and Effects Analysis. arXiv 2024, arXiv:2406.18114. [Google Scholar] [CrossRef]
- Gao, Y.; Li, R.; Caskey, J.; Dligach, D.; Miller, T.; Churpek, M.M.; Afshar, M. Leveraging A Medical Knowledge Graph into Large Language Models for Diagnosis Prediction. arXiv 2023, arXiv:2308.14321. [Google Scholar] [CrossRef]
- Chandak, P.; Huang, K.; Zitnik, M. Building a Knowledge Graph to Enable Precision Medicine. Sci. Data 2023, 10, 67. [Google Scholar] [CrossRef]
- Garg, M. Mental Health Analysis in Social Media Posts: A Survey. Arch. Comput. Methods Eng. 2023, 30, 1819–1842. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Xu, C.; Tang, L.; Wang, S.; Lin, C.; Gong, Y.; Ni, L.M.; Shum, H.-Y.; Guo, J. Think-on-Graph: Deep and Responsible Reasoning of Large Language Model on Knowledge Graph. arXiv 2024, arXiv:2307.07697. [Google Scholar] [CrossRef]
- Musen, M.A.; Shahar, Y.; Shortliffe, E.H. Clinical Decision-Support Systems. In Biomedical Informatics: Computer Applications in Health Care and Biomedicine; Shortliffe, E.H., Cimino, J.J., Eds.; Springer: New York, NY, USA, 2006; pp. 698–736. [Google Scholar] [CrossRef]
- Shortliffe, E.H.; Sepúlveda, M.J. Clinical Decision Support in the Era of Artificial Intelligence. JAMA 2018, 320, 2199–2200. [Google Scholar] [CrossRef]
- Ferrucci, D.; Brown, E.; Chu-Carroll, J.; Fan, J.; Gondek, D.; Kalyanpur, A.A.; Lally, A.; Murdock, J.W.; Nyberg, E.; Prager, J.; et al. Building Watson: An Overview of the DeepQA Project. AI Mag. 2010, 31, 59–79. [Google Scholar] [CrossRef]
- Rajkomar, A.; Dean, J.; Kohane, I. Machine Learning in Medicine. N. Engl. J. Med. 2019, 380, 1347–1358. [Google Scholar] [CrossRef]
- McKinney, S.M.; Sieniek, M.; Godbole, V.; Godwin, J.; Antropova, N.; Ashrafian, H.; Back, T.; Chesus, M.; Corrado, G.S.; Darzi, A.; et al. International Evaluation of an AI System for Breast Cancer Screening. Nature 2020, 577, 89–94. [Google Scholar] [CrossRef]
- Lakhani, P.; Sundaram, B. Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology 2017, 284, 574–582. [Google Scholar] [CrossRef]
- Sutton, R.T.; Pincock, D.; Baumgart, D.C.; Sadowski, D.C.; Fedorak, R.N.; Kroeker, K.I. An Overview of Clinical Decision Support Systems: Benefits, Risks, and Strategies for Success. NPJ Digit. Med. 2020, 3, 17. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhou, P.; Zhao, Z.; Wang, Z.; Ju, Q.; Deng, H.; Wang, P. K-BERT: Enabling Language Representation with Knowledge Graph. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 2901–2908. [Google Scholar] [CrossRef]
- Zhang, Z.; Han, X.; Liu, Z.; Jiang, X.; Sun, M.; Liu, Q. ERNIE: Enhanced Language Representation with Informative Entities. arXiv 2019, arXiv:1905.07129. [Google Scholar] [CrossRef]
- Lewis, P.; Perez, E.; Piktus, A.; Petroni, F.; Karpukhin, V.; Goyal, N.; Küttler, H.; Lewis, M.; Yih, W.; Rocktäschel, T.; et al. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. Adv. Neural Inf. Process. Syst. 2020, 33, 9459–9474. [Google Scholar]
- Wang, X.; Gao, T.; Zhu, Z.; Zhang, Z.; Liu, Z.; Li, J.; Tang, J. KEPLER: A Unified Model for Knowledge Embedding and Pre-Trained Language Representation. Trans. Assoc. Comput. Linguist. 2021, 9, 176–194. [Google Scholar] [CrossRef]
- Remy, F.; Demuynck, K.; Demeester, T. BioLORD-2023: Semantic Textual Representations Fusing LLM and Clinical Knowledge Graph Insights. arXiv 2023, arXiv:2311.16075. [Google Scholar]
- Yang, R.; Liu, H.; Marrese-Taylor, E.; Zeng, Q.; Ke, Y.H.; Li, W.; Cheng, L.; Chen, Q.; Caverlee, J.; Matsuo, Y.; et al. KG-Rank: Enhancing Large Language Models for Medical QA with Knowledge Graphs and Ranking Techniques. arXiv 2024, arXiv:2403.05881. [Google Scholar]
- Bosselut, A.; Rashkin, H.; Sap, M.; Malaviya, C.; Celikyilmaz, A.; Choi, Y. COMET: Commonsense Transformers for Automatic Knowledge Graph Construction. arXiv 2019, arXiv:1906.05317. [Google Scholar] [CrossRef]
- Sap, M.; Bras, R.L.; Allaway, E.; Bhagavatula, C.; Lourie, N.; Rashkin, H.; Roof, B.; Smith, N.A.; Choi, Y. ATOMIC: An Atlas of Machine Commonsense for If-Then Reasoning. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 3027–3035. [Google Scholar] [CrossRef]
- Yasunaga, M.; Ren, H.; Bosselut, A.; Liang, P.; Leskovec, J. QA-GNN: Reasoning with Language Models and Knowledge Graphs for Question Answering. arXiv 2022, arXiv:2104.06378. [Google Scholar] [CrossRef]
- Yao, L.; Mao, C.; Luo, Y. KG-BERT: BERT for Knowledge Graph Completion. arXiv 2019, arXiv:1909.03193. [Google Scholar] [CrossRef]
- Jia, M.; Duan, J.; Song, Y.; Wang, J. medIKAL: Integrating Knowledge Graphs as Assistants of LLMs for Enhanced Clinical Diagnosis on EMRs. arXiv 2024, arXiv:2406.14326. [Google Scholar]
- Zuo, K.; Jiang, Y.; Mo, F.; Liò, P. KG4Diagnosis: A Hierarchical Multi-Agent LLM Framework with Knowledge Graph Enhancement for Medical Diagnosis. arXiv 2024, arXiv:2412.16833. [Google Scholar]
- Khumrin, P.; Ryan, A.; Juddy, T.; Verspoor, K. DrKnow: A Diagnostic Learning Tool with Feedback from Automated Clinical Decision Support. In Proceedings of the AMIA Annual Symposium, San Francisco, CA, USA, 3–7 November 2018; Volume 2018, pp. 1348–1357. [Google Scholar]
- Agrawal, G.; Kumarage, T.; Alghamdi, Z.; Liu, H. Can Knowledge Graphs Reduce Hallucinations in LLMs?: A Survey. arXiv 2024, arXiv:2311.07914. [Google Scholar] [CrossRef]
- Yoo, S.; Jeong, O. Automating the Expansion of a Knowledge Graph. Expert Syst. Appl. 2020, 141, 112965. [Google Scholar] [CrossRef]
- Xu, Y.; He, S.; Chen, J.; Wang, Z.; Song, Y.; Tong, H.; Liu, G.; Liu, K.; Zhao, J. Generate-on-Graph: Treat LLM as Both Agent and KG in Incomplete Knowledge Graph Question Answering. arXiv 2024, arXiv:2404.14741. [Google Scholar] [CrossRef]
- He, P.; Liu, X.; Gao, J.; Chen, W. DeBERTa: Decoding-Enhanced BERT with Disentangled Attention. arXiv 2021, arXiv:2006.03654. [Google Scholar] [CrossRef]
- Dernoncourt, F.; Lee, J.Y. PubMed 200k RCT: A Dataset for Sequential Sentence Classification in Medical Abstracts. In Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers); Kondrak, G., Watanabe, T., Eds.; Asian Federation of Natural Language Processing: Taipei, Taiwan, 2017; pp. 308–313. [Google Scholar]
- Speer, R.; Chin, J.; Havasi, C. ConceptNet 5.5: An Open Multilingual Graph of General Knowledge. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31. [Google Scholar] [CrossRef]
- Liu, A.; Wang, B.; Tan, Y.; Zhao, D.; Huang, K.; He, R.; Hou, Y. MTGP: Multi-Turn Target-Oriented Dialogue Guided by Generative Global Path with Flexible Turns. In Findings of the Association for Computational Linguistics: ACL 2023; Rogers, A., Boyd-Graber, J., Okazaki, N., Eds.; Association for Computational Linguistics: Toronto, ON, Canada, 2023; pp. 259–271. [Google Scholar] [CrossRef]
- Wang, P.; Peng, N.; Ilievski, F.; Szekely, P.; Ren, X. Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering. arXiv 2020, arXiv:2005.00691. [Google Scholar] [CrossRef]
- Bodenreider, O. The Unified Medical Language System (UMLS): Integrating Biomedical Terminology. Nucleic Acids Res. 2004, 32, D267–D270. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Chen, X.; Xu, N.; Zu, C.; Shao, Z.; Liu, S.; Cui, Y.; Zhou, Z.; Gong, C.; Shen, Y.; et al. A Comprehensive Capability Analysis of GPT-3 and GPT-3.5 Series Models. arXiv 2023, arXiv:2303.10420. [Google Scholar] [CrossRef]
- Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; Yakhnenko, O. Translating Embeddings for Modeling Multi-Relational Data. Adv. Neural Inf. Process. Syst. 2013, 26, 2787–2795. [Google Scholar]
- Trouillon, T.; Welbl, J.; Riedel, S.; Gaussier, E.; Bouchard, G. Complex Embeddings for Simple Link Prediction. In Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 2071–2080. [Google Scholar]
- Reimers, N.; Gurevych, I. Sentence-BERT: Sentence Embeddings Using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; Inui, K., Jiang, J., Ng, V., Wan, X., Eds.; Association for Computational Linguistics: Hong Kong, China, 2019; pp. 3982–3992. [Google Scholar] [CrossRef]
- Mauriello, M.L.; Lincoln, T.; Hon, G.; Simon, D.; Jurafsky, D.; Paredes, P. SAD: A Stress Annotated Dataset for Recognizing Everyday Stressors in SMS-like Conversational Systems. In Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems; ACM: Yokohama, Japan, 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Garg, M.; Saxena, C.; Saha, S.; Krishnan, V.; Joshi, R.; Mago, V. CAMS: An Annotated Corpus for Causal Analysis of Mental Health Issues in Social Media Posts. In Proceedings of the Thirteenth Language Resources and Evaluation Conference, Marseille, France, 20–25 June 2022; Calzolari, N., Béchet, F., Blache, P., Choukri, K., Cieri, C., Declerck, T., Goggi, S., Isahara, H., Maegaard, B., Mariani, J., et al., Eds.; European Language Resources Association: Marseille, France, 2022; pp. 6387–6396. [Google Scholar]
- Pirina, I.; Çöltekin, Ç. Identifying Depression on Reddit: The Effect of Training Data. In Proceedings of the 2018 EMNLP Workshop SMM4H: The 3rd Social Media Mining for Health Applications Workshop & Shared Task, Brussels, Belgium, 31 October–1 November 2018; Gonzalez-Hernandez, G., Weissenbacher, D., Sarker, A., Paul, M., Eds.; Association for Computational Linguistics: Brussels, Belgium, 2018; pp. 9–12. [Google Scholar] [CrossRef]
- Turcan, E.; McKeown, K. Dreaddit: A Reddit Dataset for Stress Analysis in Social Media. arXiv 2019, arXiv:1911.00133. [Google Scholar] [CrossRef]
- Demszky, D.; Movshovitz-Attias, D.; Ko, J.; Cowen, A.; Nemade, G.; Ravi, S. GoEmotions: A Dataset of Fine-Grained Emotions. arXiv 2020, arXiv:2005.00547. [Google Scholar] [CrossRef]
- Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv 2019, arXiv:1907.11692. [Google Scholar] [CrossRef]
- Murarka, A.; Radhakrishnan, B.; Ravichandran, S. Detection and Classification of Mental Illnesses on Social Media Using RoBERTa. arXiv 2020, arXiv:2011.11226. [Google Scholar] [CrossRef]
- Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. arXiv 2023, arXiv:1910.10683. [Google Scholar] [CrossRef]
- Pendyala, S.K. Real-Time Analytics and Clinical Decision Support Systems: Transforming Emergency Care. Int. J. Multidiscip. Res. 2024, 6. [Google Scholar] [CrossRef]
- Yazzourh, S.; Savy, N.; Saint-Pierre, P.; Kosorok, M.R. Medical Knowledge Integration into Reinforcement Learning Algorithms for Dynamic Treatment Regimes. arXiv 2024, arXiv:2407.00364. [Google Scholar] [CrossRef]
- Aiello, T.F.; Teijon-Lumbreras, C.; Gallardo-Pizarro, A.; Monzó-Gallo, P.; Martinez-Urrea, A.; Cuervo, G.; Rio, A.D.; Hernández-Meneses, M.; Morata, L.; Mensa, J.; et al. Strengths and Weaknesses of Computerized Clinical Decision Support Systems: Insights from a Digital Control Center (C3 COVID-19) for Early and Personalized Treatment for COVID-19. Rev. Esp. Quim. 2025, 38, 1–7. [Google Scholar] [CrossRef]
- Qu, Y.; Dai, Y.; Yu, S.; Tanikella, P.; Schrank, T.; Hackman, T.; Li, D.; Wu, D. A Novel Compact LLM Framework for Local, High-Privacy EHR Data Applications. arXiv 2024, arXiv:2412.02868. [Google Scholar] [CrossRef]
- Puccioni, L.; Farshin, A.; Scazzariello, M.; Wang, C.; Chiesa, M.; Kostic, D. Deriving Coding-Specific Sub-Models from LLMs Using Resource-Efficient Pruning. arXiv 2025, arXiv:2501.05248. [Google Scholar] [CrossRef]
- Jiang, C.; Gao, L.; Zarch, H.E.; Annavaram, M. Efficient LLM Inference with I/O-Aware Partial KV Cache Recomputation. arXiv 2024, arXiv:2411.17089. [Google Scholar] [CrossRef]
- AbdElhameed, M.; Halim, P. Inference Scaling vs Reasoning: An Empirical Analysis of Compute-Optimal LLM Problem-Solving. arXiv 2024, arXiv:2412.16260. [Google Scholar] [CrossRef]
- Jacinth, J.; Krishnaraj, K.; Sekar, P.C.; Kanth, T.V.R. Dynamic Learning-Driven Software Ecosystems: Revolutionizing Healthcare Solutions through Real-Time Adaptation. Int. J. BIM Eng. Sci. 2025, 10, 7–17. [Google Scholar] [CrossRef]
- Torres, J.; Alonso, E.; Larburu, N. Real-World Evidence Inclusion in Guideline-Based Clinical Decision Support Systems: Breast Cancer Use Case. In Artificial Intelligence in Medicine; Juarez, J.M., Marcos, M., Stiglic, G., Tucker, A., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2023; pp. 357–361. [Google Scholar] [CrossRef]
- Choudhuri, A.; Jang, H.; Segre, A.M.; Polgreen, P.M.; Jha, K.; Adhikari, B. Continually-Adaptive Representation Learning Framework for Time-Sensitive Healthcare Applications. In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, Birmingham, UK, 21–25 October 2023; pp. 4538–4544. [Google Scholar] [CrossRef]
- Alkan, M.; Zakariyya, I.; Leighton, S.; Sivangi, K.B.; Anagnostopoulos, C.; Deligianni, F. Artificial Intelligence-Driven Clinical Decision Support Systems. arXiv 2025, arXiv:2501.09628. [Google Scholar] [CrossRef]
- Liu, Y.-K.; Tsai, Y.-C. Explainable AI for Trustworthy Clinical Decision Support: A Case-Based Reasoning System for Nursing Assistants. In Proceedings of the 2024 IEEE International Conference on Big Data (BigData), Washington, DC, USA, 15–28 December 2024; pp. 6502–6509. [Google Scholar] [CrossRef]
Dataset | Cause/Factor Detection | Status/Level Detection | Emotion Recognition | ||
---|---|---|---|---|---|
SAD | CAMS | DR | Dreaddit | GoEmotions | |
#Train | 5335 | 3946 | 2839 | 2267 | 43,410 |
#Valid | 667 | 493 | 355 | 567 | 5426 |
#Test | 667 | 494 | 355 | 715 | 5427 |
#Total | 6850 | 5052 | 3553 | 3553 | 54,263 |
#Label | 9 | 6 | 4 | 2 | 28 |
Model | Cause/Factor Detection | Status/Level Detection | Emotion Recognition | ||||
---|---|---|---|---|---|---|---|
SAD | CAMS | DR | Dreaddit | GoEmotions | |||
Original model | RoBERTa | Precision | 0.5722 | 0.1828 | 0.4795 | 0.6824 | 0.6853 |
Recall | 0.5652 | 0.2871 | 0.6366 | 0.6825 | 0.4133 | ||
F1 score | 0.5633 | 0.221 | 0.5468 | 0.6821 | 0.5306 | ||
Mental RoBERTa | Precision | 0.5805 | 0.2912 | 0.4841 | 0.69 | 0.6947 | |
Recall | 0.5817 | 0.4069 | 0.6451 | 0.6911 | 0.4325 | ||
F1 score | 0.5733 | 0.3339 | 0.553 | 0.6912 | 0.5457 | ||
Joint model | RoBERTa | Precision | 0.6124 | 0.3109 | 0.6071 | 0.6995 | 0.7407 |
Recall | 0.6177 | 0.415 | 0.6761 | 0.6993 | 0.5032 | ||
F1 score | 0.6131 | 0.3501 | 0.6077 | 0.6988 | 0.581 | ||
Mental RoBERTa | Precision | 0.6405 | 0.3863 | 0.5725 | 0.7024 | 0.7391 | |
Recall | 0.6567 | 0.4312 | 0.6986 | 0.7021 | 0.4881 | ||
F1 score | 0.6452 | 0.3786 | 0.6292 | 0.7014 | 0.5733 |
Cause/Factor Detection | Status/Level Detection | Emotion Recognition | |||
---|---|---|---|---|---|
SAD | CAMS | DR | Dreaddit | GoEmotions | |
Joint Model | 0.6131 | 0.3501 | 0.6077 | 0.6988 | 0.581 |
- Graph Expansion Layer | 0.5956 | 0.3003 | 0.5725 | 0.6831 | 0.5625 |
- Sub-Graph Extraction Layer | 0.5633 | 0.221 | 0.5468 | 0.6821 | 0.5306 |
Cause/Factor Detection | Status/Level Detection | Emotion Recognition | |||
---|---|---|---|---|---|
SAD | CAMS | DR | Dreaddit | GoEmotions | |
k = 3 | 0.6131 | 0.3501 | 0.6077 | 0.6988 | 0.581 |
k = 1 | 0.5847 | 0.3268 | 0.598 | 0.6923 | 0.5464 |
Original | 0.5633 | 0.221 | 0.5468 | 0.6821 | 0.5306 |
Cause/Factor Detection | Status/Level Detection | Emotion Recognition | ||||
---|---|---|---|---|---|---|
SAD | CAMS | DR | Dreaddit | GoEmotions | ||
RoBERTa | Sentence with T5 | 0.5882 | 0.3063 | 0.5803 | 0.6844 | 0.5803 |
Triple(proposed) | 0.6131 | 0.3501 | 0.6077 | 0.6988 | 0.581 | |
Mental RoBERTa | Sentence with T5 | 0.6027 | 0.3494 | 0.6054 | 0.694 | 0.5602 |
Triple(proposed) | 0.6452 | 0.3786 | 0.6292 | 0.7014 | 0.5733 |
Cause/Factor Detection | Status/Level Detection | Emotion Recognition | ||||
---|---|---|---|---|---|---|
SAD | CAMS | DR | Dreaddit | GoEmotions | ||
RoBERTa | All relations | 0.5882 | 0.3063 | 0.5803 | 0.6844 | 0.5803 |
Filtering(proposed) | 0.6131 | 0.3501 | 0.6077 | 0.6988 | 0.581 | |
Mental RoBERTa | All relations | 0.6027 | 0.3494 | 0.6054 | 0.694 | 0.5602 |
Filtering(proposed) | 0.6452 | 0.3786 | 0.6292 | 0.7014 | 0.5733 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, C.; Lee, H.; Lee, S.; Jeong, O. Synergistic Joint Model of Knowledge Graph and LLM for Enhancing XAI-Based Clinical Decision Support Systems. Mathematics 2025, 13, 949. https://doi.org/10.3390/math13060949
Park C, Lee H, Lee S, Jeong O. Synergistic Joint Model of Knowledge Graph and LLM for Enhancing XAI-Based Clinical Decision Support Systems. Mathematics. 2025; 13(6):949. https://doi.org/10.3390/math13060949
Chicago/Turabian StylePark, Chaelim, Hayoung Lee, Seonghee Lee, and Okran Jeong. 2025. "Synergistic Joint Model of Knowledge Graph and LLM for Enhancing XAI-Based Clinical Decision Support Systems" Mathematics 13, no. 6: 949. https://doi.org/10.3390/math13060949
APA StylePark, C., Lee, H., Lee, S., & Jeong, O. (2025). Synergistic Joint Model of Knowledge Graph and LLM for Enhancing XAI-Based Clinical Decision Support Systems. Mathematics, 13(6), 949. https://doi.org/10.3390/math13060949