A Hybrid Approach for the Container Loading Problem for Enhancing the Dynamic Stability Representation
Abstract
1. Introduction
2. Related Work
2.1. Security Constraints
2.2. Logistic Constraints
3. Solution Approach
3.1. Hybrid Approach
Algorithm 1 Proposed Hybrid Approach |
Input: Vector order vector of destinations, List list of boxes for each destination i, Tuple : dimensions of the container (length, width, and height); Parameters: total GRASP iterations, set of coefficients for the reactive feature, number of iterations for training; Output: Solution .
|
Algorithm 2 Build RCL |
Input: list of feasible blocks, selected residual space, Current iteration; Parameters: set of alphas, number of iterations for training; Output: restricted candidates list of blocks for the space e
|
3.2. Mechanical Model for Dynamic Stability
Algorithm 3 Calculate Dynamic Stability |
Input: set of boxes packed along with their respective allocated positions; Parameters: Static Mechanical Variables; Outputs: percentage of broken boxes, List free boxes and box columns
|
4. Computational Experiments and Result Analysis
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Santos, L.; Coutinho-Rodrigues, J.; Current, J.R. An improved heuristic for the capacitated arc routing problem. Comput. Oper. Res. 2009, 36, 2632–2637. [Google Scholar] [CrossRef]
- Martin, P. Global Parcel Shipping Volume Between 2013 and 2026 (in Billion Parcels). 2022. Available online: https://www.statista.com/statistics/1139910/parcel-shipping-volume-worldwide/ (accessed on 12 April 2022).
- Li, Y.; Tang, X.; Cai, W. On dynamic bin packing for resource allocation in the cloud. In Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and Architectures, Prague, Czech Republic, 23–25 June 2014; pp. 2–11. [Google Scholar]
- Bischoff, E.E.; Ratcliff, M. Issues in the development of approaches to container loading. Omega 1995, 23, 377–390. [Google Scholar] [CrossRef]
- Bortfeldt, A.; Wäscher, G. Constraints in container loading–a state-of-the-art review. Eur. J. Oper. Res. 2013, 229, 1–20. [Google Scholar] [CrossRef]
- Ramos, A.G.; Silva, E.; Oliveira, J.F. A new load balance methodology for container loading problem in road transportation. Eur. J. Oper. Res. 2018, 266, 1140–1152. [Google Scholar] [CrossRef]
- Martínez-Franco, J.C.; Álvarez-Martínez, D. Physx as a middleware for dynamic simulations in the container loading problem. In Proceedings of the 2018 Winter Simulation Conference (WSC), Gothenburg, Sweden, 9–12 December 2018; pp. 2933–2940. [Google Scholar]
- Martínez-Franco, J.; Céspedes-Sabogal, E.; Álvarez-Martínez, D. PackageCargo: A decision support tool for the container loading problem with stability. SoftwareX 2020, 12, 100601. [Google Scholar] [CrossRef]
- Martínez, D.A.; Alvarez-Valdes, R.; Parreño, F. A grasp algorithm for the container loading problem with multi-drop constraints. Pesqui. Oper. 2015, 35, 1–24. [Google Scholar] [CrossRef]
- Zhao, X.; Bennell, J.A.; Bektaş, T.; Dowsland, K. A comparative review of 3D container loading algorithms. Int. Trans. Oper. Res. 2016, 23, 287–320. [Google Scholar] [CrossRef]
- Ali, S.; Ramos, A.G.; Carravilla, M.A.; Oliveira, J.F. On-line three-dimensional packing problems: A review of off-line and on-line solution approaches. Comput. Ind. Eng. 2022, 168, 108122. [Google Scholar] [CrossRef]
- Hartmanis, J. Computers and intractability: A guide to the theory of np-completeness (michael r. garey and david s. johnson). Siam Rev. 1982, 24, 90. [Google Scholar] [CrossRef]
- Scheithauer, G. Algorithms for the container loading problem. In Operations Research Proceedings 1991; Springer: Berlin/Heidelberg, Germany, 1992; pp. 445–452. [Google Scholar]
- Pepelyshev, A.; Zhigljavsky, A.; Žilinskas, A. Performance of global random search algorithms for large dimensions. J. Glob. Optim. 2018, 71, 57–71. [Google Scholar] [CrossRef]
- Wäscher, G.; Haußner, H.; Schumann, H. An improved typology of cutting and packing problems. Eur. J. Oper. Res. 2007, 183, 1109–1130. [Google Scholar] [CrossRef]
- da Silva, E.F.; Leão, A.A.; Toledo, F.M.; Wauters, T. A matheuristic framework for the Three-dimensional Single Large Object Placement Problem with practical constraints. Comput. Oper. Res. 2020, 124, 105058. [Google Scholar] [CrossRef]
- Chen, C.; Lee, S.M.; Shen, Q. An analytical model for the container loading problem. Eur. J. Oper. Res. 1995, 80, 68–76. [Google Scholar] [CrossRef]
- Martello, S.; Pisinger, D.; Vigo, D. The three-dimensional bin packing problem. Oper. Res. 2000, 48, 256–267. [Google Scholar] [CrossRef]
- Junqueira, L.; Morabito, R.; Yamashita, D.S. Three-dimensional container loading models with cargo stability and load bearing constraints. Comput. Oper. Res. 2012, 39, 74–85. [Google Scholar] [CrossRef]
- Paquay, C.; Schyns, M.; Limbourg, S. A mixed integer programming formulation for the three-dimensional bin packing problem deriving from an air cargo application. Int. Trans. Oper. Res. 2016, 23, 187–213. [Google Scholar] [CrossRef]
- Ocloo, V.E.; Fügenschuh, A.; Pamen, O.M. A New Mathematical Model for a 3D Container Packing Problem; Brandenburgische Technische Universität Cottbus-Senftenberg, Fakultät 1/MINT: Cottbus, Germany, 2020. [Google Scholar]
- do Nascimento, O.X.; de Queiroz, T.A.; Junqueira, L. Practical constraints in the container loading problem: Comprehensive formulations and exact algorithm. Comput. Oper. Res. 2021, 128, 105186. [Google Scholar] [CrossRef]
- Fanslau, T.; Bortfeldt, A. A tree search algorithm for solving the container loading problem. INFORMS J. Comput. 2010, 22, 222–235. [Google Scholar] [CrossRef]
- George, J.A.; Robinson, D.F. A heuristic for packing boxes into a container. Comput. Oper. Res. 1980, 7, 147–156. [Google Scholar] [CrossRef]
- Bortfeldt, A.; Gehring, H. A hybrid genetic algorithm for the container loading problem. Eur. J. Oper. Res. 2001, 131, 143–161. [Google Scholar] [CrossRef]
- Ceschia, S.; Schaerf, A.; Stützle, T. Local search techniques for a routing-packing problem. Comput. Ind. Eng. 2013, 66, 1138–1149. [Google Scholar] [CrossRef]
- Ramos, A.G.; Oliveira, J.F.; Gonçalves, J.F.; Lopes, M.P. A container loading algorithm with static mechanical equilibrium stability constraints. Transp. Res. Part B Methodol. 2016, 91, 565–581. [Google Scholar] [CrossRef]
- Sheng, L.; Xiuqin, S.; Changjian, C.; Hongxia, Z.; Dayong, S.; Feiyue, W. Heuristic algorithm for the container loading problem with multiple constraints. Comput. Ind. Eng. 2017, 108, 149–164. [Google Scholar] [CrossRef]
- Eley, M. Solving container loading problems by block arrangement. Eur. J. Oper. Res. 2002, 141, 393–409. [Google Scholar] [CrossRef]
- Zhang, D.; Peng, Y.; Leung, S.C. A heuristic block-loading algorithm based on multi-layer search for the container loading problem. Comput. Oper. Res. 2012, 39, 2267–2276. [Google Scholar] [CrossRef]
- Zhu, W.; Oon, W.C.; Lim, A.; Weng, Y. The six elements to block-building approaches for the single container loading problem. Appl. Intell. 2012, 37, 431–445. [Google Scholar] [CrossRef]
- Gehring, H.; Bortfeldt, A. A genetic algorithm for solving the container loading problem. Int. Trans. Oper. Res. 1997, 4, 401–418. [Google Scholar] [CrossRef]
- Bortfeldt, A.; Gehring, H.; Mack, D. A parallel tabu search algorithm for solving the container loading problem. Parallel Comput. 2003, 29, 641–662. [Google Scholar] [CrossRef]
- Liu, J.; Yue, Y.; Dong, Z.; Maple, C.; Keech, M. A novel hybrid tabu search approach to container loading. Comput. Oper. Res. 2011, 38, 797–807. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, F. An effective tabu search approach with improved loading algorithms for the 3L-CVRP. Comput. Oper. Res. 2015, 55, 127–140. [Google Scholar] [CrossRef]
- Mack, D.; Bortfeldt, A.; Gehring, H. A parallel hybrid local search algorithm for the container loading problem. Int. Trans. Oper. Res. 2004, 11, 511–533. [Google Scholar] [CrossRef]
- Egeblad, J.; Pisinger, D. Heuristic approaches for the two-and three-dimensional knapsack packing problem. Comput. Oper. Res. 2009, 36, 1026–1049. [Google Scholar] [CrossRef]
- Mostaghimi Ghomi, H.; St Amour, B.G.; Abdul-Kader, W. Three-dimensional container loading: A simulated annealing approach. Int. J. Appl. Eng. Res. 2017, 12, 1290. [Google Scholar]
- Moura, A.; Oliveira, J.F. A GRASP approach to the container-loading problem. IEEE Intell. Syst. 2005, 20, 50–57. [Google Scholar] [CrossRef]
- Lim, A.; Ma, H.; Qiu, C.; Zhu, W. The single container loading problem with axle weight constraints. Int. J. Prod. Econ. 2013, 144, 358–369. [Google Scholar] [CrossRef]
- Correcher, J.F.; Alonso, M.T.; Parreño, F.; Alvarez-Valdés, R. Solving a large multicontainer loading problem in the car manufacturing industry. Comput. Oper. Res. 2017, 82, 139–152. [Google Scholar] [CrossRef]
- Alonso, M.T.; Alvarez-Valdés, R.; Iori, M.; Parreño, F. Mathematical models for multi container loading problems with practical constraints. Comput. Ind. Eng. 2019, 127, 722–733. [Google Scholar] [CrossRef]
- Cuellar-Usaquen, D.; Camacho-Muñoz, G.; Quiroga-Gomez, C.; Álvarez-Martínez, D. An approach for the pallet-building problem and subsequent loading in a heterogeneous fleet of vehicles with practical constraints. Int. J. Ind. Eng. Comput. 2021, 12, 329–344. [Google Scholar] [CrossRef]
- Bortfeldt, A. A hybrid algorithm for the capacitated vehicle routing problem with three-dimensional loading constraints. Comput. Oper. Res. 2012, 39, 2248–2257. [Google Scholar] [CrossRef]
- Deplano, I.; Lersteau, C.; Nguyen, T.T. A mixed-integer linear model for the multiple heterogeneous knapsack problem with realistic container loading constraints and bins’ priority. Int. Trans. Oper. Res. 2021, 28, 3244–3275. [Google Scholar] [CrossRef]
- Iori, M.; Martello, S. Routing problems with loading constraints. TOP 2010, 18, 4–27. [Google Scholar] [CrossRef]
- Paquay, C.; Limbourg, S.; Schyns, M.; Oliveira, J.F. MIP-based constructive heuristics for the three-dimensional Bin Packing Problem with transportation constraints. Int. J. Prod. Res. 2018, 56, 1581–1592. [Google Scholar] [CrossRef]
- Toffolo, T.A.; Esprit, E.; Wauters, T.; Berghe, G.V. A two-dimensional heuristic decomposition approach to a three-dimensional multiple container loading problem. Eur. J. Oper. Res. 2017, 257, 526–538. [Google Scholar] [CrossRef]
- Wang, L.; Guo, S.; Chen, S.; Zhu, W.; Lim, A. Two natural heuristics for 3D packing with practical loading constraints. In Proceedings of the Pacific Rim International Conference on Artificial Intelligence, Daegu, Repubic of Korea, 30 August–2 September 2010; pp. 256–267. [Google Scholar]
- Alonso, M.T.; Alvarez-Valdes, R.; Parreño, F.; Tamarit, J.M. Algorithms for pallet building and truck loading in an interdepot transportation problem. Math. Probl. Eng. 2016, 2016, 11. [Google Scholar] [CrossRef]
- Costa, M.d.G.; Captivo, M.E. Weight distribution in container loading: A case study. Int. Trans. Oper. Res. 2016, 23, 239–263. [Google Scholar] [CrossRef]
- Gehring, H.; Menschner, K.; Meyer, M. A computer-based heuristic for packing pooled shipment containers. Eur. J. Oper. Res. 1990, 44, 277–288. [Google Scholar] [CrossRef]
- Haessler, R.W.; Talbot, F.B. Load planning for shipments of low density products. Eur. J. Oper. Res. 1990, 44, 289–299. [Google Scholar] [CrossRef]
- Moon, I.; Nguyen, T.V.L. Container packing problem with balance constraints. Spectrum 2014, 36, 837–878. [Google Scholar] [CrossRef]
- Parreño, F.; Alvarez-Valdés, R.; Tamarit, J.M.; Oliveira, J.F. A maximal-space algorithm for the container loading problem. INFORMS J. Comput. 2008, 20, 412–422. [Google Scholar] [CrossRef]
- Mahvash, B.; Awasthi, A.; Chauhan, S. A column generation-based heuristic for the three-dimensional bin packing problem with rotation. J. Oper. Res. Soc. 2018, 69, 78–90. [Google Scholar] [CrossRef]
- Sharma, E. Harmonic algorithms for packing d-dimensional cuboids into bins. arXiv 2020, arXiv:2011.10963. [Google Scholar]
- Moura, A.; Bortfeldt, A. A two-stage packing problem procedure. Int. Trans. Oper. Res. 2017, 24, 43–58. [Google Scholar] [CrossRef]
- Reidy, S. The Basics that Everyone Must Know About CARGO DAMAGE. 2020. Available online: https://arviem.com/the-basics-that-everyone-must-know-about-cargo-damage/ (accessed on 28 May 2022).
- Jiang, Y. How Much a Damaged Pack Can Really Cost Your Business. 2020. Available online: https://www.amcor.com/insights/blogs/how-much-a-damaged-pack-can-really-cost-your-business#:~:text=Replacing%20a%20damaged%20product%20can,to%20research%20firm%20IHL%20Group (accessed on 16 May 2022).
- Techanitisawad, A.; Tangwiwatwong, P. A GA-based heuristic for the interrelated container selection loading problems. Ind. Eng. Manag. Syst. 2004, 3, 22–37. [Google Scholar]
- Fuellerer, G.; Doerner, K.F.; Hartl, R.F.; Iori, M. Metaheuristics for vehicle routing problems with three-dimensional loading constraints. Eur. J. Oper. Res. 2010, 201, 751–759. [Google Scholar] [CrossRef]
- Queiroz, T.A.; Bracht, E.C.; Miyazawa, F.K.; Bittencourt, M.L. An extension of Queiroz and Miyazawa’s method for vertical stability in two-dimensional packing problems to deal with horizontal stability. Eng. Optim. 2019, 51, 1049–1070. [Google Scholar] [CrossRef]
- Ramos, A.G.; Oliveira, J.F.; Gonçalves, J.F.; Lopes, M.P. Dynamic stability metrics for the container loading problem. Transp. Res. Part C Emerg. Technol. 2015, 60, 480–497. [Google Scholar] [CrossRef]
- Ren, J.; Tian, Y.; Sawaragi, T. A priority-considering approach for the multiple container loading problem. Int. J. Metaheuristics 2011, 1, 298–316. [Google Scholar] [CrossRef]
- Wang, N.; Lim, A.; Zhu, W. A multi-round partial beam search approach for the single container loading problem with shipment priority. Int. J. Prod. Econ. 2013, 145, 531–540. [Google Scholar] [CrossRef]
- Gimenez-Palacios, I.; Alonso, M.T.; Alvarez-Valdes, R.; Parreño, F. Logistic constraints in container loading problems: The impact of complete shipment conditions. TOP 2021, 29, 177–203. [Google Scholar] [CrossRef]
- Kurpel, D.V.; Scarpin, C.T.; Junior, J.E.P.; Schenekemberg, C.M.; Coelho, L.C. The exact solutions of several types of container loading problems. Eur. J. Oper. Res. 2020, 284, 87–107. [Google Scholar] [CrossRef]
- Amossen, R.R.; Pisinger, D. Multi-dimensional bin packing problems with guillotine constraints. Comput. Oper. Res. 2010, 37, 1999–2006. [Google Scholar] [CrossRef]
- Olsson, J.; Larsson, T.; Quttineh, N.H. Automating the planning of container loading for Atlas Copco: Coping with real-life stacking and stability constraints. Eur. J. Oper. Res. 2020, 280, 1018–1034. [Google Scholar] [CrossRef]
- Elhedhli, S.; Gzara, F.; Yildiz, B. Three-Dimensional Bin Packing and Mixed-Case Palletization. INFORMS J. Optim. 2019, 1, 323–352. [Google Scholar] [CrossRef]
- Christensen, S.G.; Rousøe, D.M. Container loading with multi-drop constraints. Int. Trans. Oper. Res. 2009, 16, 727–743. [Google Scholar] [CrossRef]
- Silva, E.; Ramos, A.G.; Oliveira, J.F. Load balance recovery for multi-drop distribution problems: A mixed integer linear programming approach. Transp. Res. Part B Methodol. 2018, 116, 62–75. [Google Scholar] [CrossRef]
- Gendreau, M.; Iori, M.; Laporte, G.; Martello, S. A tabu search algorithm for a routing and container loading problem. Transp. Sci. 2006, 40, 342–350. [Google Scholar] [CrossRef]
- Bortfeldt, A.; Gehring, H. Applying Tabu Search to Container Loading Problems. In Proceedings of the Operations Research Proceedings 1997: Selected Papers of the Symposium on Operations Research (SOR’97), Jena, Germany, 3–5 September 1997; pp. 533–538. [Google Scholar]
- Araújo, O.C.B.D.; Armentano, V.A. A multi-start random constructive heuristic for the container loading problem. Pesqui. Oper. 2007, 27, 311–331. [Google Scholar] [CrossRef]
- Gonçalves, J.F.; Resende, M.G. A parallel multi-population biased random-key genetic algorithm for a container loading problem. Comput. Oper. Res. 2012, 39, 179–190. [Google Scholar] [CrossRef]
- Saraiva, R.D.; Nepomuceno, N.; Pinheiro, P.R. A Two-Phase Approach for Single Container Loading with Weakly Heterogeneous Boxes. Algorithms 2019, 12, 67. [Google Scholar] [CrossRef]
- Nishiyama, S.; Lee, C.; Mashita, T. Designing a flexible evaluation of container loading using physics simulation. Commun. Comput. Inf. Sci. 2020, 1173 CCIS, 255–268. [Google Scholar]
- Pachon, J.C.; Martinez-Franco, J.; Alvarez-Martinez, D. SIC: An intelligent packing system with industry-grade features. SoftwareX 2022, 20, 101241. [Google Scholar] [CrossRef]
- de Azevedo Oliveira, L.; de Lima, V.L.; de Queiroz, T.A.; Miyazawa, F.K. The container loading problem with cargo stability: A study on support factors, mechanical equilibrium and grids. Eng. Optim. 2021, 53, 1192–1211. [Google Scholar] [CrossRef]
- Filella, G.B.; Trivella, A.; Corman, F. Modeling soft unloading constraints in the multi-drop container loading problem. Eur. J. Oper. Res. 2023, 308, 336–352. [Google Scholar] [CrossRef]
- Feo, T.A.; Resende, M.G. Greedy randomized adaptive search procedures. J. Glob. Optim. 1995, 6, 109–133. [Google Scholar] [CrossRef]
- Parreño, F.; Alvarez-Valdés, R.; Oliveira, J.F.; Tamarit, J.M. Neighborhood structures for the container loading problem: A VNS implementation. J. Heuristics 2010, 16, 1–22. [Google Scholar] [CrossRef]
- Martínez, J.C.; Cuellar, D.; Álvarez Martínez, D. Review of Dynamic Stability Metrics and a Mechanical Model Integrated with Open Source Tools for the Container Loading Problem. Electron. Notes Discret. Math. 2018, 69, 325–332. [Google Scholar] [CrossRef]
- Naber, G. Container Handbook. Cargo Loss Prevention Information from German Marine Insurers. Chapter 2. 2018. Available online: https://www.containerhandbuch.de/chb_e/ (accessed on 12 April 2022).
Ref. * | Approach | Weight Limit | Orientation | Stacking | Vertical Stability | Horizontal Stability | Complete Cargo | Pattern Complexity | Customer Positioning |
---|---|---|---|---|---|---|---|---|---|
[4] | Multi-drop Heuristic | × | × | × | × | ||||
[75] | Tabu Search | × | × | × | × | ||||
[33] | Tabu Search | × | × | ||||||
[76] | Multi-start Heuristic | × | × | × | |||||
[55] | GRASP | × | × | ||||||
[72] | Tree Search | × | × | × | × | ||||
[23] | Tree Search | × | × | × | |||||
[34] | Tabu Search | × | × | × | × | ||||
[31] | Block-building Heuristic | × | |||||||
[77] | Genetic | × | × | ||||||
[19] | MILP | × | × | × | × | ||||
[66] | Beam Search | × | × | ||||||
[40] | GRASP | × | × | ||||||
[54] | Genetic | × | × | ||||||
[28] | First-expired Heuristic | × | × | × | × | ||||
[6] | Genetic | × | × | × | |||||
[78] | Matheuristic | × | × | ||||||
[67] | VNS | × | |||||||
[79] | Genetic | × | × | ||||||
[80] | Simulation | × | × | × | × | × | × | ||
[81] | MILP | × | |||||||
[16] | Matheuristic | × | × | × | × | × | |||
[8] | Simulation | × | × | × | × | × | × | ||
[82] | MILP | × | × | × | × | ||||
Ours | Hybrid | × | × | × | × | × | × |
Less than 21 Different Boxes | More than 20 Different Boxes | ||||||
---|---|---|---|---|---|---|---|
Level | Threshold | Threshold | |||||
0.01 | 0.05 | 0.25 | 0.01 | 0.05 | 0.25 | ||
Low | # Boxes | 44.53 | 44.54 | 44.54 | 48.37 | 48.37 | 71.1 |
% Volume | 60.7 | 60.7 | 60.7 | 69.99 | 70.12 | 70.12 | |
Medium | # Boxes | 69.85 | 69.85 | 69.85 | 66.99 | 68.59 | 72.99 |
% Volume | 86.57 | 87.65 | 88.63 | 86.57 | 87.65 | 88.63 | |
Large | # Boxes | 68.26 | 70.06 | 70.04 | 70.12 | 69.5 | 72.61 |
% Volume | 86.66 | 86.67 | 86.66 | 65.54 | 74.06 | 73.34 |
Df | Sum Sq | Mean Sq | F Value | Pr (>F) | ||
---|---|---|---|---|---|---|
Quantity_Boxes | 2 | 2914.5 | 1457.2 | 15.066 | 2.95 | *** |
Threshold | 2 | 89 | 44.5 | 0.46 | 0.636 | |
Dif_Boxes | 1 | 9.2 | 9.2 | 0.096 | 0.759 | |
Residuals | 30 | 2901.7 | 96.7 |
diff | lwr | upr | p adj | |
---|---|---|---|---|
Low–Large | −16.6414 | −26.5395 | −6.7433 | 0.0007 |
Medium–Large | 4.1937 | −5.7044 | 14.0918 | 0.5552 |
Medium–Low | 20.8351 | 10.9370 | 30.7332 | 0.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montes-Franco, A.M.; Martinez-Franco, J.C.; Tabares, A.; Álvarez-Martínez, D. A Hybrid Approach for the Container Loading Problem for Enhancing the Dynamic Stability Representation. Mathematics 2025, 13, 869. https://doi.org/10.3390/math13050869
Montes-Franco AM, Martinez-Franco JC, Tabares A, Álvarez-Martínez D. A Hybrid Approach for the Container Loading Problem for Enhancing the Dynamic Stability Representation. Mathematics. 2025; 13(5):869. https://doi.org/10.3390/math13050869
Chicago/Turabian StyleMontes-Franco, Ana María, Juan Camilo Martinez-Franco, Alejandra Tabares, and David Álvarez-Martínez. 2025. "A Hybrid Approach for the Container Loading Problem for Enhancing the Dynamic Stability Representation" Mathematics 13, no. 5: 869. https://doi.org/10.3390/math13050869
APA StyleMontes-Franco, A. M., Martinez-Franco, J. C., Tabares, A., & Álvarez-Martínez, D. (2025). A Hybrid Approach for the Container Loading Problem for Enhancing the Dynamic Stability Representation. Mathematics, 13(5), 869. https://doi.org/10.3390/math13050869