Reconstruction and Prediction of Regional Population Migration Neural Network Model with Age Structure
Abstract
:1. Introduction
2. Basic Assumptions and Well-Posedness Result
3. Neural Network
4. Error Analysis for Learning-Informed Population Model
5. Numerical Simulation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bloom, D.E.; Boersch-Supan, A.; McGee, P.; Seike, A. Population aging: Facts, challenges, and responses. Benefits Compens. Int. 2011, 41, 22. [Google Scholar]
- Pham, T.N.; Vo, D.H. Aging population and economic growth in developing countries: A quantile regression approach. Emerg. Mark. Financ. Trade 2021, 57, 108–122. [Google Scholar] [CrossRef]
- Supriatna, A.; Susanti, D.; Hertini, E. Application of Holt exponential smoothing and ARIMA method for data population in West Java. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; Volume 166, p. 012034. [Google Scholar] [CrossRef]
- Li, W.; Su, Z.; Guo, P. A prediction model for population change using ARIMA model based on feature extraction. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2019; Volume 1324, p. 012083. [Google Scholar] [CrossRef]
- Negara, H.R.P. Computational modeling of ARIMA-based G-MFS methods: Long-term forecasting of increasing population. Int. J. Ofemerg. Trends Eng. Res. 2020, 8, 3665–3669. [Google Scholar] [CrossRef]
- Rao, C.; Gao, Y. Influencing factors analysis and development trend prediction of population aging in Wuhan based on TTCCA and MLRA-ARIMA. Soft Comput. 2021, 25, 5533–5557. [Google Scholar] [CrossRef] [PubMed]
- Lanz, B.; Dietz, S.; Swanson, T. Global population growth, technology, and Malthusian constraints: A quantitative growth theoretic perspective. Int. Econ. Rev. 2017, 58, 973–1006. [Google Scholar] [CrossRef]
- Wu, W.Y.; Chen, S.P. A prediction method using the grey model GMC (1, n) combined with the grey relational analysis: A case study on Internet access population forecast. Appl. Math. Comput. 2005, 169, 198–217. [Google Scholar] [CrossRef]
- Tong, M.; Yan, Z.; Chao, L. Research on a grey prediction model of population growth based on a logistic approach. Discret. Dyn. Nat. Soc. 2020, 2020, 2416840. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, R.; Xie, N.; Jin, J. Predicting the Population Growth and Structure of China Based on Grey Fractional-Order Models. J. Math. 2021, 2021, 7725125. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, C.; Jia, Z.; Zhang, X.; Song, Y. The application of a novel grey model in the prediction of China’s aging population. Soft Comput. 2023, 27, 12501–12516. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Wang, Y. Grey forecasting the impact of population and GDP on the carbon emission in a Chinese region. J. Clean. Prod. 2023, 425, 139025. [Google Scholar] [CrossRef]
- Kong, J.S.D.; Yu, J.Y. Population System Control. Math. Comput. Model. 1988, 11, 11–16. [Google Scholar] [CrossRef]
- Guo, B.Z.; Chan, W.L. A semigroup approach to age-dependent population dynamics with time delay. Commun. Partial. Differ. Equ. 1989, 14, 809–832. [Google Scholar] [CrossRef]
- Guo, B.Z. A finite difference scheme for the equations of population dynamics. Math. Comput. Model. 1995, 21, 75–87. [Google Scholar] [CrossRef]
- Guo, B.Z.; Yao, C.Z. New results on the exponential stability of non-stationary population dynamics. Acta Math. Sci. 1996, 16, 330–337. [Google Scholar] [CrossRef]
- Ainseba, B.; Anita, S. Local exact controllability of the age–dependent population dynamics with diffusion. Abstr. Appl. Anal. 2001, 6, 357–368. [Google Scholar] [CrossRef]
- Anita, S. Analysis and Control of Age-Dependent Population Dynamics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Fragnelli, G.; Yamamoto, M. Carleman estimates and controllability for a degenerate structured population model. Appl. Math. Optim. 2021, 84, 999–1044. [Google Scholar] [CrossRef]
- Hegoburu, N.; Magal, P.; Tucsnak, M. Controllability with positivity constraints of the lotka-mckendrick system. SIAM J. Control Optim. 2018, 56, 723–750. [Google Scholar] [CrossRef]
- Maity, D.; Tucsnak, M.; Zuazua, E. Controllability and positivity constraints in population dynamics with age structuring and diffusion. J. Math. Pures Appl. 2019, 129, 153–179. [Google Scholar] [CrossRef]
- Niaki, S.T.A.; Hoseinzade, S. Forecasting S & P 500 index using artificial neural networks and design of experiments. J. Ind. Eng. Int. 2013, 9, 1. [Google Scholar] [CrossRef]
- Chon, T.S.; Park, Y.S.; Kim, J.M.; Lee, B.Y.; Chung, Y.J.; Kim, Y. Use of an artificial neural network to predict population dynamics of the Forest–Pest pine needle gall midge (Diptera: Cecidomyiida). Environ. Entomol. 2000, 29, 1208–1215. [Google Scholar] [CrossRef]
- Claveria, O.; Monte, E.; Torra, S. Multiple-Input Multiple-Output vs. Single-Input Single-Output Neural Network Forecasting; No. 2015-02; Research Institute of Applied Economics: Barcelona, Spain, 2015. [Google Scholar] [CrossRef]
- Folorunso, O.; Akinwale, A.T.; Asiribo, O.E.; Adeyemo, T.A. Population prediction using artificial neural network. Afr. J. Math. Comput. Sci. Res. 2010, 3, 155–162. [Google Scholar]
- Nordbotten, S. Neural network imputation applied to the Norwegian 1990 population census data. J. Off. Stat. 1996, 12, 385–402. [Google Scholar]
- Tang, Z.; Leung, C.W.; Bagchi, K. Improving population estimation with neural network models. In International Symposium on Neural Networks; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1181–1186. [Google Scholar] [CrossRef]
- Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations; Springer Science and Business Media: Berlin/Heidelberg, Germany, 1983. [Google Scholar] [CrossRef]
- Song, J.; Yu, J.Y. Population Control System; Springer: New York, NY, USA, 1987. [Google Scholar] [CrossRef]
- Dong, G.; Hintermüller, M.; Papafitsoros, K. Optimization with learning-informed differential equation constraints and its applications. ESAIM Control Optim. Calc. Var. 2022, 28, 3. [Google Scholar] [CrossRef]
- Ma, L.; Wang, H.; Gao, J. Dynamics of two-species Holling type-II predator-prey system with cross-diffusion. J. Differ. Equ. 2023, 365, 591–635. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Wu, Y.; Cheng, Y.; Guo, Y.; Wei, K.; Zhao, J. Reconstruction and Prediction of Regional Population Migration Neural Network Model with Age Structure. Mathematics 2025, 13, 755. https://doi.org/10.3390/math13050755
Li C, Wu Y, Cheng Y, Guo Y, Wei K, Zhao J. Reconstruction and Prediction of Regional Population Migration Neural Network Model with Age Structure. Mathematics. 2025; 13(5):755. https://doi.org/10.3390/math13050755
Chicago/Turabian StyleLi, Cuiying, Yulin Wu, Yi Cheng, Yandong Guo, Kun Wei, and Jie Zhao. 2025. "Reconstruction and Prediction of Regional Population Migration Neural Network Model with Age Structure" Mathematics 13, no. 5: 755. https://doi.org/10.3390/math13050755
APA StyleLi, C., Wu, Y., Cheng, Y., Guo, Y., Wei, K., & Zhao, J. (2025). Reconstruction and Prediction of Regional Population Migration Neural Network Model with Age Structure. Mathematics, 13(5), 755. https://doi.org/10.3390/math13050755