Asymptotic Behaviours for an Index Whittaker Transform over
Abstract
:1. Introduction and Preliminaries
2. Asymptotic Behaviours for the Index Whittaker Transform over
3. Final Observations and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yakubovich, S.B. Index Transforms; World Scientific Publishing Company: Singapore, 1996. [Google Scholar]
- Sousa, R.; Guerra, M.; Yakubovich, S. Lévy processes with respect to the index Whittaker convolution. Trans. Amer. Math. Soc. 2020, 374, 2383–2419. [Google Scholar] [CrossRef]
- Olver, F.W.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. NIST Handbook of Mathematical Functions; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Wimp, J. A class of integral transforms. Proc. Edinb. Math. Soc. 1964, 14, 33–40. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Vyas, O.D. A theorem relating generalized Hankel and Whittaker transforms. Nederl. Akad. Wetensch. Proc. Ser. A 72 Indag. Math. 1969, 72, 140–144. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Goyal, S.P.; Jain, R.M. A theorem relating a certain generalized Weyl fractional integral with the Laplace transform and a class of Whittaker transforms. J. Math. Anal. Appl. 1990, 153, 407–419. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Vasil’ev Yu, V.; Yakubovich, S.B. A class of index transforms with Whittaker’s function as the kernel. Quart. J. Math. Oxford Ser. 1998, 49, 375–394. [Google Scholar] [CrossRef]
- AL-Musallam, F.A. A Whittaker transform over a half line. Integral Transforms Spec. Funct. 2001, 12, 201–212. [Google Scholar] [CrossRef]
- AL-Musallam, F.; Tuan, V.K. A finite and an infinite Whittaker integral transform. Comput. Math. Appl. 2003, 46, 1847–1859. [Google Scholar] [CrossRef]
- Sousa, R.; Guerra, M.; Yakubovich, S. On the product formula and convolution associated with the index Whittaker transform. J. Math. Anal. Appl. 2019, 475, 939–965. [Google Scholar] [CrossRef]
- Becker, P.A. On the integration of products of Whittaker functions with respect to the second index. J. Math. Phys. 2004, 45, 761–773. [Google Scholar] [CrossRef]
- Maan, J.; González, B.J.; Negrín, E.R. Abelian theorems for a variant of the index Whittaker transform over . Anal. Math. 2024. accepted for publication. [Google Scholar]
- Maan, J.; Negrín, E.R. Index Whittaker transforms over Lebesgue spaces. J. Pseudo-Differ. Oper. Appl. 2025, 16, 3. [Google Scholar] [CrossRef]
- Maan, J.; Prasad, A. Abelian theorems in the framework of the distributional index Whittaker transform. Math. Commun. 2022, 27, 1–9. [Google Scholar]
- Zemanian, A.H. Some Abelian theorems for the distributional Hankel and K transformations. SIAM J. Appl. Math. 1966, 14, 1255–1265. [Google Scholar] [CrossRef]
- González, B.J.; Negrín, E.R. Abelian theorems for distributional Kontorovich-Lebedev and Mehler-Fock transforms of general order. Banach J. Math. Anal. 2019, 13, 524–537. [Google Scholar] [CrossRef]
- González, B.J.; Negrín, E.R.; Maan, J. Abelian theorems for the real Weierstrass transform over compactly supported distributions. Mathematics 2024, 12, 3546. [Google Scholar] [CrossRef]
- Maan, J.; Negrín, E.R. Abelian theorems for Laplace, Mellin and Stieltjes transforms over distributions of compact support and generalized functions. Rend. Circ. Mat. Palermo II. Ser. 2022, 72, 2213–2229. [Google Scholar] [CrossRef]
- Maan, J.; González, B.J.; Negrín, E.R. Abelian theorems for the index 2F1-transform over distributions of compact support and generalized functions. Filomat 2023, 37, 10229–10236. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mishra, K.; Upadhyay, S.K. Abelian theorems involving the fractional wavelet transforms. Filomat 2023, 37, 9453–9468. [Google Scholar] [CrossRef]
- Horváth, J. Topological Vector Spaces and Distributions; Addison-Wesley: Reading, MA, USA, 1966; Volume I. [Google Scholar]
- Schwartz, L. Théorie des Distributions; Hermann: Paris, France, 1957. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negrín, E.R.; Maan, J.; González, B.J.
Asymptotic Behaviours for an Index Whittaker Transform over
Negrín ER, Maan J, González BJ.
Asymptotic Behaviours for an Index Whittaker Transform over
Negrín, Emilio R., Jeetendrasingh Maan, and Benito J. González.
2025. "Asymptotic Behaviours for an Index Whittaker Transform over
Negrín, E. R., Maan, J., & González, B. J.
(2025). Asymptotic Behaviours for an Index Whittaker Transform over