The Existence of Positive Solutions for a p-Laplacian Tempered Fractional Diffusion Equation Using the Riemann–Stieltjes Integral Boundary Condition
Abstract
:1. Introduction
2. Preliminaries and Lemmas
- (i)
- where
- (ii)
- (A0)
- A is a function of bounded variation satisfying for and
- (1)
- (2)
- (A1)
- (A2)
- There exists a positive constant n such that, for any ,
- (A3)
- There is a constant such that for any
- (1)
- or
- (2)
3. The Main Results
4. Examples
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and Applications of Fractional Differential Equations in North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- He, J.; Zhang, X.; Liu, L.; Wu, Y.; Cui, Y. A singular fractional Kelvin-Voigt model involving a nonlinear operator and their convergence properties. Bound. Value Probl. 2019, 2019, 112. [Google Scholar] [CrossRef]
- Zhang, X.; Mao, C.; Liu, L.; Wu, Y. Exact iterative solution for an abstract fractional dynamic system model for bioprocess. Qual. Theory Dyn. Syst. 2017, 16, 205–222. [Google Scholar] [CrossRef]
- Baleanu, D.; Jajarmi, A.; Mohammadi, H.; Rezapour, S. A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative. Chaos Solitons Fractals 2020, 134, 109705. [Google Scholar] [CrossRef]
- Ren, T.; Li, S.; Zhang, X.; Liu, L. Maximum and minimum solutions for a nonlocal p-Laplacian fractional differential system from eco-economical processes. Bound. Value Probl. 2017, 2017, 118. [Google Scholar] [CrossRef]
- Zhang, J.; Song, J.; Chen, H. A priori error estimates for spectral galerkin approximations of integral state-constrained fractional optimal control problems. Adv. Appl. Math. Mech. 2023, 15, 568–582. [Google Scholar] [CrossRef]
- Wang, C.; Hou, X.; Wu, Q.; Dang, P.; Fu, Z. Fractional Fourier series on the torus and applications. Fractal Fract. 2024, 8, 494. [Google Scholar] [CrossRef]
- Gu, Q.; Chen, Y.; Zhou, J.; Huang, J. A fast linearized virtual element method on graded meshes for nonlinear time-fractional diffusion equations. Numer. Algorithms 2024, 2024, 1–37. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, Q.; Jhang, S.; Kang, Q. Approximation theorems associated with multidimensional fractional fouried reansform and applications in Laplace and heat equations. Fractal Fract. 2022, 6, 625. [Google Scholar] [CrossRef]
- Kuang, N.; Xie, H. Derivative of self-intersection local time for the sub-bifractional Brownian motion. AIMS Math. 2022, 7, 10286–10302. [Google Scholar] [CrossRef]
- Fu, Z.; Lin, Y.; Yang, D.; Yang, S. Fractional Fourier transforms meet Riesz potentials and image processing. SIAM J. Imaging Sci. 2024, 17, 476–500. [Google Scholar] [CrossRef]
- Duong, X.; Lacey, M.; Li, J.; Wick, B.; Wu, Q. Commutators of Cauchy-Szego type integrals for domains in Cn with minimal smoothness. Indiana Univ. Math. J. 2021, 70, 1505–1541. [Google Scholar] [CrossRef]
- Fu, Z.; Lu, S.; Shi, S. Two characterizations of central BMO space via the commutators of Hardy operators. Forum Math. Gruyter 2021, 33, 505–529. [Google Scholar] [CrossRef]
- Shi, S.; Zhang, L.; Wang, G. Fractional non-linear regularity, potential and balayage. J. Geom. Anal. 2022, 32, 221. [Google Scholar] [CrossRef]
- Wu, J.; Wu, Q.; Yang, Y.; Dang, P.; Ren, G. Riemann-Liouville fractional integrals and derivatives on Morrey spaces and applications to a Cauchy-type problem. J. Appl. Anal. Comput. 2024, 14, 1078–1096. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, G. Fractional Adams-Moser-Trudinger type inequality with singular term in Lorentz space and Lp space. J. Appl. Anal. Comput. 2024, 14, 133–145. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, L.; Zi, Y.; Li, J. Solvability of fractional differential system with parameters and singular nonlinear terms. AIMS Math. 2024, 9, 22435–22453. [Google Scholar] [CrossRef]
- Shi, S.; Zhai, Z.; Zhang, L. Characterizations of the viscosity solution of a nonlocal and nonlinear equation induced by the fractional p-Laplace and the fractional p-convexity. Adv. Calc. Var. 2023, 17, 195–207. [Google Scholar] [CrossRef]
- Xue, Y.; Wei, Y. Ground states of nonlocal fractional Schrödinger equations with potentials well. Taiwan J. Math. 2022, 26, 1203–1217. [Google Scholar] [CrossRef]
- Guo, L.; Wang, Y.; Li, C.; Cai, J.; Zhang, B. Solvability for a higher-order Hadamard fractional differential model with a sign-changing nonlinearity dependent on the parameter ϱ. J. Appl. Anal. Comput. 2024, 14, 2762–2776. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, P.; Zhou, W. Two-grid finite element method for time-fractional nonlinear Schrödinger equation. J. Comput. Math 2024, 42, 1124–1144. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, P.; Wu, Y.; Wiwatanapataphee, B. The uniqueness and iterative properties of solutions for a general Hadamard-type singular fractional turbulent flow model. Nonlinear Anal. Model. Control 2022, 27, 428–444. [Google Scholar] [CrossRef]
- Zhou, B.; Zhang, L.; Addai, E.; Zhang, N. Multiple positive solutions for nonlinear high-order Riemann-Liouville fractional differential equations boundary value problems with p-Laplacian operator. Bound. Value Probl. 2020, 26, 2020. [Google Scholar] [CrossRef]
- Leibenson, L. General problem of the movement of a compressible fluid in a porous medium. Izv. Akad. Nauk Kirg. SSSR 1983, 9, 7–10. [Google Scholar]
- Beran, J. Statistics for Long-Memory Processes; Routledge: London, UK, 2017. [Google Scholar] [CrossRef]
- Sabzikar, F.; Meerschaert, M.; Chen, J. Tempered fractional calculus. J. Comput. Phys. 2015, 293, 14–28. [Google Scholar] [CrossRef] [PubMed]
- Cartea, Á.; Negrete, D. Fluid limit of the continuous-time random walk with general Lévy jump distribution functions. Phys. Rev. E 2007, 76, 41–105. [Google Scholar] [CrossRef]
- Meerschaert, M.; Zhang, Y.; Baeumer, B. Tempered anomalous diffusion in heterogeneous systems. Geophys. Res. Lett. 2008, 35, L17403. [Google Scholar] [CrossRef]
- Zhang, Y.; Meerschaert, M. Gaussian setting time for solute transport in fluvial systems. Water Resour. Res. 2011, 47, W08601. [Google Scholar] [CrossRef]
- Carr, P.; Geman, H.; Madan, D.; Yor, M. The fine structure of asset returns: An empirical investigation. J. Bus. 2002, 75, 305–333. [Google Scholar] [CrossRef]
- Mali, A.; Kucche, K.; Fernandez, A.; Fahad, H. On tempered fractional calculus with respect to functions and the associated fractional differential equations. Math. Methods Appl. Sci. 2022, 45, 11134–11157. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, X.; Liu, L.; Wu, Y.; Cui, Y. Convergence analysis of iterative scheme and error estimation of positive solution for a fractional differential equation. Math. Model. Anal. 2018, 23, 611–626. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, P.; Tian, H.; Wu, Y. Upper and Lower Solution Method for a Singular Tempered Fractional Equation with a p-Laplacian Operator. Fractal Fract. 2023, 7, 522. [Google Scholar] [CrossRef]
- Gong, R.; Vempati, M.N.; Wu, Q.; Xie, P. Boundedness and compactness of Cauchy-type integral commutator on weighted Morrey spaces. J. Aust. Math. Soc. 2022, 113, 36–56. [Google Scholar] [CrossRef]
- Fu, Z.; Hou, X.; Lee, M.Y.; Li, J. A study of one-sided singular integral and function space via reproducing formula. J. Geom. Anal. 2023, 33, 289. [Google Scholar] [CrossRef]
- Wang, W.; Wu, Q.; Wang, W.; Wu, Q. Atomic decomposition theorem for Hardy spaces on products of Siegel upper half spaces and Bi-parameter Hardy spaces. J. Geom. Anal. 2023, 33, 351. [Google Scholar] [CrossRef]
- Dang, P.; Du, J.; Qian, T. Riemann boundary value problems for monogenic functions on the hyperplane. Adv. Appl. Clifford Algebr. 2022, 32, 29. [Google Scholar] [CrossRef]
- Wang, X.; Wang, G. Singular Hardy–Adams inequalities on hyperbolic spaces of any even dimension. Ann. Pol. Math. Inst. Mat. Pol. Akad. Nauk. 2022, 129, 175–192. [Google Scholar] [CrossRef]
- Gu, L.; Liu, Y.; Yang, C. Solvability of some Riemann-Hilbert problems related to dirac operator with gradient potential in R3. J. Appl. Anal. Comput. 2024, 14, 976–985. [Google Scholar] [CrossRef]
- Chen, W.; Fu, Z.; Grafakos, L.; Wu, Y. Fractional Fourier transforms on Lp and applications. Appl. Comput. Harmon. Anal. 2021, 55, 71–96. [Google Scholar] [CrossRef]
- Gu, L.; Liu, Y.; Lin, R. Some integral representation formulas and Schwarz lemmas related to perturbed Dirac operators. J. Appl. Anal. Comput. 2022, 12, 2475–2487. [Google Scholar] [CrossRef]
- Fu, Z.; Grafakos, L.; Lin, Y.; Wu, Y.; Yang, S. Riesz transform associated with the fractional Fourier transform and applications in image edge detection. Appl. Comput. Harmon. Anal. 2023, 66, 211–235. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Wu, Y.; Cui, Y. The existence and nonexistence of entire large solutions for a quasilinear Schrodinger elliptic system by dual approach. J. Math. Anal. Appl. 2018, 464, 1089–1106. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, X.; Liu, L.; Wu, Y.; Cui, Y. The convergence analysis and error estimation for unique solution of a p-Laplacian fractional differential equation with singular decreasing nonlinearity. Bound. Value Probl. 2018, 2018, 82. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, P.; Wu, Y.; Wiwatanapataphee, B. A necessary and sufficient condition for the existence of entire large solutions to a Hessian system. Appl. Math. Lett. 2023, 145, 108745. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, J.; Wu, Y.; Cui, Y. Existence and asymptotic properties of solutions for a nonlinear Schrödinger elliptic equation from geophysical fluid flows. Appl. Math. Lett. 2019, 90, 229–237. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Wu, Y.; Cui, Y. A sufficient and necessary condition of existence of blow-up radial solutions for a k-Hessian equation with a nonlinear operator. Nonlinear Anal. Model. Control 2020, 25, 126–143. [Google Scholar] [CrossRef]
- Zhou, J.; Li, H.; Zhang, Z. A posteriori error estimates of spectral approximations for second order partial differential equations in spherical geometries. J. Sci. Comput. 2022, 90, 56. [Google Scholar] [CrossRef]
- Zheng, W.; Chen, Y.; Zhou, J. A Legendre spectral method for multidimensional partial Volterra integro-differential equations. J. Comput. Appl. Math. 2024, 436, 115302. [Google Scholar] [CrossRef]
- Jia, Z. Global boundedness of weak solutions for an attraction-repulsion chemotaxis system with p-Laplacian diffusion and nonlinear production. Discret. Contin. Dyn. Syst.-Ser. B 2023, 28, 4847–4863. [Google Scholar] [CrossRef]
- Wu, J.; He, X.; Li, X. Finite-time stabilization of time-varying nonlinear systems based on a novel differential inequality approach. Appl. Math. Comput. 2022, 420, 126895. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, W. On strongly indefinite schrödinger equations with non-periodic potential. J. Appl. Anal. Comput. 2023, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Z.; Jia, Z. Global weak solutions for an attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source. Acta Math. Sci. 2024, 44, 909–924. [Google Scholar] [CrossRef]
- Gu, L.; Liu, Y. Nonlinear Riemann type problems associated to Hermitian Helmholtz equations. Complex Var. Elliptic Equ. 2023, 68, 763–775. [Google Scholar] [CrossRef]
- Guo, Z.; Jiang, T.; Vasil’ev, V.I.; Wang, G. Complex structure-preserving method for Schrödinger equations in quaternionic quantum mechanics. Numer. Algorithms 2024, 97, 271–287. [Google Scholar] [CrossRef]
- Ai, B.; Jia, Z. The global existence and boundedness of solutions to a Chemotaxis–Haptotaxis model with nonlinear diffusion and signal production. Mathematics 2024, 12, 2577. [Google Scholar] [CrossRef]
- Zhang, X.; Tain, H.; Wu, Y.; Wiwatanapataphee, B. The radial solution for an eigenvalue problem of singular augmented k-Hessian equation. Appl. Math. Lett. 2022, 134, 108330. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, P.; Wu, Y. The eigenvalue problem of a singular k-Hessian equation. Appl. Math. Lett. 2022, 124, 107666. [Google Scholar] [CrossRef]
- Ledesma, C.; Cuti, H.; Rodríguez, J.; Bonilla, M. Boundary value problem with tempered fractional derivatives and oscillating term. J. Pseudo-Differ. Oper. Appl. 2023, 14, 62. [Google Scholar] [CrossRef]
- Webb, J. Nonlocal conjugate type boundary value problems of higher order. Nonlinear Anal. 2009, 71, 1933–1940. [Google Scholar] [CrossRef]
- Guo, D.J.; Lakshmikantham, V. Nonlinear Problems in Abstract Cone; Academic Press Inc.: New York, NY, USA, 1988. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Zhang, X.; Chen, P.; Wu, Y. The Existence of Positive Solutions for a p-Laplacian Tempered Fractional Diffusion Equation Using the Riemann–Stieltjes Integral Boundary Condition. Mathematics 2025, 13, 541. https://doi.org/10.3390/math13030541
Li L, Zhang X, Chen P, Wu Y. The Existence of Positive Solutions for a p-Laplacian Tempered Fractional Diffusion Equation Using the Riemann–Stieltjes Integral Boundary Condition. Mathematics. 2025; 13(3):541. https://doi.org/10.3390/math13030541
Chicago/Turabian StyleLi, Lishuang, Xinguang Zhang, Peng Chen, and Yonghong Wu. 2025. "The Existence of Positive Solutions for a p-Laplacian Tempered Fractional Diffusion Equation Using the Riemann–Stieltjes Integral Boundary Condition" Mathematics 13, no. 3: 541. https://doi.org/10.3390/math13030541
APA StyleLi, L., Zhang, X., Chen, P., & Wu, Y. (2025). The Existence of Positive Solutions for a p-Laplacian Tempered Fractional Diffusion Equation Using the Riemann–Stieltjes Integral Boundary Condition. Mathematics, 13(3), 541. https://doi.org/10.3390/math13030541