An Interior Regularity Property for the Solution to a Linear Elliptic System with Singular Coefficients in the Lower-Order Term
Abstract
:1. Introduction
2. Notations and Preliminary Results
2.1. Spaces
2.2. Lorentz Spaces
2.3. Difference Quotient
- and
- If at least one of the functions F or G has support contained in , then
- The following equality holds:
3. Proof of Theorem 1
- Step 1. The uniqueness
- Step 2. The a priori estimate
- Step 3. The approximation
- ;
- ;
- , where ;
- ;
- ;
- converges to A in .
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miranda, C. Alcune limitazioni integrali per le soluzioni delle equazioni lineari ellittiche di secondo ordine. Ann. Mat. Pura Appl. 1960, 49, 375–384. [Google Scholar] [CrossRef]
- Miranda, C. Sulle equazioni ellittiche del secondo ordine di tipo non variazionale con coefficienti non discontinui. Ann. Mat. Pura Appl. 1963, 63, 353–386. [Google Scholar] [CrossRef]
- Chiarenza, F.; Frasca, M.; Longo, P. W2.,p solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients. Trans. Am. Math. Soc. 1993, 336, 841–853. [Google Scholar]
- Chiarenza, F. Lp regularity for systems of PDEs with coefficients in VMO. Nonlinear Anal. Funct. Spaces Appl. 1994, 5, 1–32. [Google Scholar]
- Giannetti, F.; Moscariello, G. W2,2-solvability of the Dirichlet problem for a class of elliptic equations with discontinuous coefficients. Rend. Lincei Mat. Appl. 2018, 29, 557–577. [Google Scholar]
- Greco, L.; Moscariello, G.; Radice, T. Nondivergence Elliptic Equations with unbounded coefficients. Discret. Contin. Dyn. Syst. 2009, 11, 131–143. [Google Scholar] [CrossRef]
- Capone, C.; Radice, T. A regularity result for a class of elliptic equations with lower order terms. J. Elliptic Parabol. Equ. 2020, 6, 751–771. [Google Scholar] [CrossRef]
- Arcoya, D.; Boccardo, L. Regularizing effect of the interplay between coefficients in some elliptic equations. J. Funct. Anal. 2015, 268, 1153–1166. [Google Scholar] [CrossRef]
- Arcoya, D.; Boccardo, L. Regularizing effect of Lq interplay between coefficients in some elliptic equations. J. Math. Pures Appl. 2018, 111, 106–125. [Google Scholar] [CrossRef]
- Radice, T. A regularity result for non uniformly elliptic equations with lower order terms. Stud. Math. 2024, 276, 1–17. [Google Scholar] [CrossRef]
- Stroffolini, B. Elliptic systems of PDE with BMO coefficients. Potential Anal. 2001, 15, 285–299. [Google Scholar] [CrossRef]
- Moscariello, G.; Pascale, G. Second order regularity for a linear elliptic system having BMO coefficients. Milan J. Math. 2021, 89, 413–432. [Google Scholar] [CrossRef]
- Moscariello, G.; Pascale, G. Higher differentiability and integrability for some nonlinear elliptic systems with growth coefficients in BMO. Calc. Var. 2024, 63, 80. [Google Scholar] [CrossRef]
- Farroni, F.; Greco, L.; Moscariello, G.; Zecca, G. Noncoercive quasilinear elliptic operators with singular lower order terms. Calc. Var. Partial. Differ. Equ. 2021, 60, 83. [Google Scholar] [CrossRef]
- Farroni, F.; Greco, L.; Moscariello, G.; Zecca, G. Noncoercive parabolic obstacle problems. Adv. Nonlinear Anal. 2023, 12, 20220322. [Google Scholar] [CrossRef]
- Radice, T.; Zecca, G. Existence and uniqueness for nonlinear elliptic equations with unbounded coefficients. Ric. Mat. 2014, 63, 355–367. [Google Scholar] [CrossRef]
- Brezis, H.; Nirenberg, L. Degree theory and BMO, part I: Compact manifolds without boundaries. Sel. Math. New Ser. 1995, 1, 197–263. [Google Scholar] [CrossRef]
- John, F.; Nirenberg, L. On functions of bounded mean oscillation. Comm. Pure Appl. Math 1961, 14, 415–426. [Google Scholar] [CrossRef]
- Coifman, R.; Rochberg, R. Another characterization of BMO. Proc. AMS 1980, 79, 249–254. [Google Scholar] [CrossRef]
- O’Neil, R. Fractional Integration in Orlicz spaces I. Am. Math. Soc. 1965, 115, 300–328. [Google Scholar] [CrossRef]
- Alvino, A. Sulla disuguaglianza di Sobolev in spazi di Sobolev. Boll. Unione Mat. Ital. 1977, 14, 148–156. [Google Scholar]
- Giusti, E. Direct Method in the Calculus of Variations; World Scientific: Singapore, 2003. [Google Scholar]
- Iwaniec, T.; Sbordone, C. Weak minima of variational integrals. J. Reine Angew. Math. 1994, 454, 143–162. [Google Scholar]
- Morrey, C.B., Jr. Second order elliptic systems of differential equations. Ann. Math. Stud. 1954, 33, 101–159. [Google Scholar]
- Benilanm, P.; Brezis, H.; Crandall, M. A semilinear equation in L1(). Ann. Sc. Norm. Super. Pisa Cl. Sci. 1975, 4, 523–555. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radice, T. An Interior Regularity Property for the Solution to a Linear Elliptic System with Singular Coefficients in the Lower-Order Term. Mathematics 2025, 13, 489. https://doi.org/10.3390/math13030489
Radice T. An Interior Regularity Property for the Solution to a Linear Elliptic System with Singular Coefficients in the Lower-Order Term. Mathematics. 2025; 13(3):489. https://doi.org/10.3390/math13030489
Chicago/Turabian StyleRadice, Teresa. 2025. "An Interior Regularity Property for the Solution to a Linear Elliptic System with Singular Coefficients in the Lower-Order Term" Mathematics 13, no. 3: 489. https://doi.org/10.3390/math13030489
APA StyleRadice, T. (2025). An Interior Regularity Property for the Solution to a Linear Elliptic System with Singular Coefficients in the Lower-Order Term. Mathematics, 13(3), 489. https://doi.org/10.3390/math13030489