Golden Angle Modulation in Complex Dimension Two
Abstract
1. Introduction
2. Related Works
2.1. Golden Angle Modulation on
2.2. Complex Geometric Properties of Open Symmetrized Bidisc
3. GAM on the Symmetrized Bidisc
3.1. Bd-GAM1
3.2. Bd-GAM2
3.3. The Complex Geometric Properties Analysis of Bd-GAM1/2
3.4. MI Optimization Problem of Probabilistic- and Geometric- Bd-GAM: Bd-GAM1/2
4. Numerical Results and Discussions
4.1. Magnitude Distribution of Bd-GAM1
4.2. Kobayashi Pseudo-Distance of Adjacent Constellation Points
4.3. Mutual Information Performance for Bd-GAM
- A.
- Bd-GAM1
- B.
- Bd-GAM2
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thomas, C.; Weidner, M.; Durrani, S. Digital amplitude-phase keying with M-ary alphabets. IEEE Trans. Commun. 1974, 22, 168–180. [Google Scholar] [CrossRef]
- Hanzo, L.L.; Ng, S.X.; Keller, T.; Webb, W. Star QAM Schemes for Rayleigh fading channels. In Quadrature Amplitude Modulation: From Basics to Adaptive Trellis-Coded, Turbo-Equalised and Space-Time Coded OFDM, CDMA and MC-CDMA Systems; Wiley-IEEE Press: Hoboken, NJ, USA, 2004; pp. 307–335. [Google Scholar]
- Forney, G.D.; Ungerboeck, G. Modulation and coding for linear Gaussian channels. IEEE Trans. Inf. Theory 1998, 44, 2384–2415. [Google Scholar] [CrossRef]
- Betts, W.; Calderbank, A.R.; Laroian, R. Performance of non-uniform constellations on the Gaussian channel. IEEE Trans. Inf. Theory 1994, 40, 1633–1638. [Google Scholar] [CrossRef]
- Sommer, D.; Fettweis, G.P. Signal shaping by non-uniform QAM for AWGN channels and applications using turbo coding. In Proceedings of the International ITG Conference Source and Channel Coding, Munich, Germany, 17–19 January 2000; pp. 81–86. [Google Scholar]
- Barsoum, M.F.; Jones, C.; Fitz, M. Constellation design via capacity maximization. In Proceedings of the 2007 IEEE International Symposium on Information Theory, Nice, France, 24–29 June 2007; pp. 1821–1825. [Google Scholar]
- Forney, G.; Gallager, R.; Lang, G.; Longstaff, F.; Qureshi, S. Efficient modulation for band-limited channels. IEEE J. Sel. Top. Signal Process. 1984, 2, 632–647. [Google Scholar] [CrossRef]
- Calderbank, A.R.; Ozarow, L.H. Nonequiprobable signaling on the Gaussian channels. IEEE Trans. Inf. Theory 1990, 36, 726–740. [Google Scholar] [CrossRef]
- Kschischang, F.R.; Pasupathy, S. Optimal non-uniform signaling for Gaussian channels. IEEE Trans. Inf. Theory 1993, 39, 913–929. [Google Scholar] [CrossRef]
- Divsalar, D.; Simon, M.; Yuen, J. Trellis coding with asymmetric modulations. IEEE Trans. Commun. 1987, 35, 130–141. [Google Scholar] [CrossRef]
- Khandani, A.K.; Kaba, P. Shaping multidimensional signal spaces. IEEE Trans. Inf. Theory 1993, 39, 1799–1808. [Google Scholar] [CrossRef]
- Larsson, P. Golden angle modulation. IEEE Wirel. Commun. Lett. 2018, 7, 98–101. [Google Scholar] [CrossRef]
- Larsson, P.; Rasmussen, L.K.; Skoglund, M. Golden Angle Modulation: Approaching the AWGN Capacity. arXiv 2018, arXiv:1802.10022. [Google Scholar]
- Larsson, P. Golden angle modulation: Geometric- and probabilistic-shaping. arXiv 2017, arXiv:1708.07321. [Google Scholar]
- Vogel, H. A better way to construct the sunflower head. Math. Biosci. 1979, 44, 179–189. [Google Scholar] [CrossRef]
- Greene, R.E.; Kim, K.T.; Krantz, S.G. The Geometry of Complex Domains; Progress in Mathematics; Birkhäuser: Boston, MA, USA, 2011; Volume 291. [Google Scholar]
- Agler, J.; Yeh, F.B.; Young, N.J. Realization of functions into the symmetrized bidisc. Oper. Theory Adv. Appl. 2003, 143, 1–37. [Google Scholar] [CrossRef]
- Mheich, Z.; Wen, L.; Xiao, P.; Maaref, A. Design of SCMA Codebooks Based on Golden Angle Modulation. IEEE Trans. Veh. Technol. 2019, 68, 1501–1509. [Google Scholar] [CrossRef]
- Larsson, P.; Rasmussen, L.K.; Skoglund, M. The Golden Quantizer: The Complex Gaussian Random Variable Case. IEEE Wirel. Commun. Lett. 2018, 143, 312–315. [Google Scholar] [CrossRef]
- Costara, C. The symmetrized bidisc and Lempert’s theorem. Bull. Lond. Math. Soc. 2004, 36, 656–662. [Google Scholar] [CrossRef]
- Dineen, S. The Schwarz Lemma; Oxford University Press: Oxford, UK, 1989. [Google Scholar]
- Lempert, L. Lamétrique de Kobayashi et la représentation des domaines sur la boule. Bull. Soc. Math. Fr. 2018, 109, 427–474. [Google Scholar]
Modulation Format | Entropy | PAPR () |
---|---|---|
Bd-GAM1 prop. | dB ≃ 1 dB | |
Bd-GAM2 prop. | = | |
Disc-GAM [12] | dB | |
Geometric-bell-GAM [12] | ||
Generalized Disc-GAM [14] | 2 dB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, K.; Li, H.; Zhao, D.; Jiang, Y. Golden Angle Modulation in Complex Dimension Two. Mathematics 2025, 13, 414. https://doi.org/10.3390/math13030414
Hu K, Li H, Zhao D, Jiang Y. Golden Angle Modulation in Complex Dimension Two. Mathematics. 2025; 13(3):414. https://doi.org/10.3390/math13030414
Chicago/Turabian StyleHu, Kejia, Hongyi Li, Di Zhao, and Yuan Jiang. 2025. "Golden Angle Modulation in Complex Dimension Two" Mathematics 13, no. 3: 414. https://doi.org/10.3390/math13030414
APA StyleHu, K., Li, H., Zhao, D., & Jiang, Y. (2025). Golden Angle Modulation in Complex Dimension Two. Mathematics, 13(3), 414. https://doi.org/10.3390/math13030414