Fuzzy Aspects Associated with Biological Inheritance
Abstract
1. Introduction
2. Preliminary Material
The Algorithm to Determine the Fuzzy Degree on a Hypergroup
3. Results on the Fuzzy Function Associated with Mendelian Inheritance
3.1. The Fuzzy Function Associated with the Dihybrid Cross
3.2. Fuzzy Function Associated with Trihybrid Cross Case
4. Generalization of k Hibridization
The Connection Between Hybridization and Matrix Blocks
5. Conclusions and Future Research
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marty, F. Sur une generalization de la notion de group. In Proceedings of the 8th Congress of Scandinavian Mathematicians, Stockholm, Sweden, 14–18 August 1934; pp. 45–49. [Google Scholar]
- Al-Tahan, M.; Davvaz, B. Algebraic hyperstructures associated to biological inheritance. Math. Biosci. 2017, 285, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Erciyes, K. Graph-Theoretical analysis of Biological Networks: A Survey. Computation 2023, 11, 188. [Google Scholar] [CrossRef]
- Leoreanu-Fotea, V.; Sonea, A.; Davvaz, B. The fuzzy degree of a genetic hypergroup. Ann. Fuzzy Math. Inform. 2023, 25, 125–138. [Google Scholar] [CrossRef]
- Reed, M.L. Algebraic structure of genetic inheritance. Bull. Amer. Math. Soc. 1997, 34, 107–130. [Google Scholar] [CrossRef]
- Sonea, A.; Leoreanu-Fotea, V. A Combinatorial Study for the Distribution of Phenotypes. J.-Mult.-Valued Log. Soft Comput. 2023, 40, 569–585. [Google Scholar]
- Bales, M.E.; Johnson, S.B. Graph theoretic modeling of large scale semantic networks. J. Biomed. Inform. 2006, 39, 451–464. [Google Scholar] [CrossRef] [PubMed]
- Kalampakas, A. Fuzzy Graph Hyperoperations and Path-Based Algebraic Structures. Mathematics 2025, 13, 2180. [Google Scholar] [CrossRef]
- Fakhry Asad, A.; Sonea, A.; Mariam, H. Hyperstructures in Chemical Hyperstructures of Redox Reactions with Three and Four Oxidation States. J. Teor. Dan Apl. Mat. 2024, 8, 50–57. [Google Scholar] [CrossRef]
- Cristea, I.; Kocijan, J.; Novák, M. Introduction to Dependence Relations and Their Links to Algebraic Hyperstructures. Mathematics 2019, 7, 885. [Google Scholar] [CrossRef]
- Bavel, Z.; Gryzmala, J.; Hong, K. On the conectivity of the product of automata. Fundam. Inf. 1984, 7, 225–265. [Google Scholar]
- Massourous, C.; Mittas, J. Languages-automata and hypercompositional structure. In Proceedings of the 4th International Congress on Algebraic Hyperstructures and Applications, Xanthi, Greece, 27–30 June 1990; World Scientific Publishing Co. Pte. Ltd.: Singapore, 1991; pp. 137–147. [Google Scholar]
- Corsini, P.; Leoreanu, V. Applications of Hyperstructures Theory; Kluwer Academic Publishers: Boston, MA, USA; Dordrechtt, The Netherlands; London, UK, 2003. [Google Scholar]
- Corsini, P. Rough Sets, Fuzzy Sets and Join Spaces; Honorary Volume Dedicated to Professor Emeritus Ioannis Mittas; Aristotle University of Thessaloniki: Thessaloniki, Greece, 2000; pp. 65–72. [Google Scholar]
- Angheluţă, C.; Cristea, I. Fuzzy grade of the complete hypergroups. Iran. J. Fuzzy Syst. 2012, 9, 43–56. [Google Scholar] [CrossRef]
- Davvaz, B.; Cristea, I. Fuzzy Algebraic Hyperstructures—An Introduction; Studies in Fuzziness and Soft Computing; Springer: Berlin/Heidelberg, Germany, 2015; Volume 321. [Google Scholar]
- Ştefănescu, M.; Cristea, I. On the fuzzy grade of hypergroups. Fuzzy Sets Syst. 2008, 159, 1097–1106. [Google Scholar] [CrossRef]
- Zlati, C.; Grădinariu, G.; Istrate, M.; Draghia, L. Histological investigation on graft formation in pear/quince (Pyrus communis/Cydonia oblonga) combinations. Acta Hortic. 2011, 923, 291–298. [Google Scholar] [CrossRef]
- Zlati, C.; Istrate, M.; Dascălu, M.; Pașcu, R.; Bernardis, R. An assessment of current status future trends and opportunities for improving exotic and underutilized pome fruit species production in Romania. Sci. Papers Ser. B Hortic. 2024, 68, 224–229. [Google Scholar]
- Casian, H. Genetica; Printech: Miami, FL, USA, 2006. [Google Scholar]
| … | |||||
|---|---|---|---|---|---|
| … | |||||
| … | |||||
| … | |||||
| ⋮ | … | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sonea, A.P. Fuzzy Aspects Associated with Biological Inheritance. Mathematics 2025, 13, 3847. https://doi.org/10.3390/math13233847
Sonea AP. Fuzzy Aspects Associated with Biological Inheritance. Mathematics. 2025; 13(23):3847. https://doi.org/10.3390/math13233847
Chicago/Turabian StyleSonea, Andromeda Pătraşcu. 2025. "Fuzzy Aspects Associated with Biological Inheritance" Mathematics 13, no. 23: 3847. https://doi.org/10.3390/math13233847
APA StyleSonea, A. P. (2025). Fuzzy Aspects Associated with Biological Inheritance. Mathematics, 13(23), 3847. https://doi.org/10.3390/math13233847

