Next Article in Journal
Edge-Aware Illumination Enhancement for Fine-Grained Defect Detection on Railway Surfaces
Previous Article in Journal
Denoising Diffusion Model-Driven Adaptive Estimation of Distribution Algorithm Integrating Multi-Modal Data
Previous Article in Special Issue
A Symmetric Quantum Perspective of Analytical Inequalities and Their Applications
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On Fractional Simpson-Type Inequalities via Harmonic Convexity

1
School of Mathematical and Computer Science, Yichun University, Yichun 336000, China
2
Department of Mathematics, Faculty of Science and Arts, Kocaeli University, Umuttepe Campus, Kocaeli 41001, Türkiye
3
Department CPST, National Higher School of Technology and Engineering, Annaba 23005, Algeria
4
School of Mathematics and Physics, Suqian University, Suqian 223800, China
5
School of Mathematics and Computer Science, Shangrao Normal University, Shangrao 334001, China
6
Laboratory of Analysis and Control of Differential Equations “ACED”, Department of Mathematics, Faculty MISM, University of 8 May 1945 Guelma, P.O. Box 401, Guelma 24000, Algeria
*
Author to whom correspondence should be addressed.
Mathematics 2025, 13(23), 3778; https://doi.org/10.3390/math13233778
Submission received: 20 October 2025 / Revised: 17 November 2025 / Accepted: 18 November 2025 / Published: 25 November 2025
(This article belongs to the Special Issue Mathematical Inequalities and Fractional Calculus)

Abstract

In this paper, we establish some Simpson-type inequalities within the framework of Riemann–Liouville fractional calculus, specifically tailored for differentiable harmonically convex functions. By introducing a novel fractional integral identity for differentiable functions with harmonic arguments, we derive several estimates that generalize and refine existing results in the literature. The theoretical findings are validated through a numerical example supported by graphical illustration, and potential applications in approximation theory and numerical analysis are discussed.

1. Introduction

Convexity is one of the most fundamental and powerful concepts in mathematical analysis, optimization, and applied mathematics. A real-valued function ϕ : I R R defined on an interval I is said to be convex if for all i 1 , i 2 I and [ 0 , 1 ] , the inequality
ϕ ( i 1 + ( 1 ) i 2 ) ϕ ( i 1 ) + ( 1 ) ϕ ( i 2 )
holds. This elementary definition captures the intuitive notion that the graph of a convex function lies below the chord joining any two points on the graph. Convex functions enjoy numerous desirable properties making them indispensable in variational analysis, economics, engineering, and numerical methods.
Among the most celebrated results in the theory of convex functions is the Hermite–Hadamard inequality, which provides a double-sided estimate for the integral average of a convex function over an interval. Precisely, if ϕ : [ a , b ] R is convex, then
ϕ a + b 2 1 b a b a ϕ ( ν ) d ν ϕ ( a ) + ϕ ( b ) 2 .
This elegant inequality not only characterizes convexity (in the sense that a continuous function satisfying the above for all subintervals is convex) but also serves as a cornerstone for deriving numerous integral inequalities in mathematical analysis. Over the past century, the Hermite–Hadamard inequality has inspired a vast body of research aimed at refining, extending, and generalizing it under various assumptions on the function class and the integration operator.
Simpson-type inequalities provide valuable error estimates for the classical Simpson quadrature rule by leveraging only the first-order derivative. This represents a significant improvement over classical approaches that require boundedness of the fourth-order derivative, as it relaxes smoothness assumptions and extends applicability to functions with lower regularity. Over the past decades, these inequalities have been extensively generalized in various directions, including fractional calculus, multiplicative calculus, and different classes of convex functions such as s-convex, coordinated convex, and exponentially convex functions.
In [1], Sarikaya et al. presented the following Simpson-type inequality:
1 6 ϕ ( a ) + 4 ϕ a + b 2 + ϕ ( b ) 1 b a b a ϕ ( ν ) d ν 5 ( b a ) 72 ϕ ( a ) + ϕ ( b ) ,
where ϕ is convex on [ a , b ] .
Recent works have established refined versions of Simpson-type inequalities using novel integral identities and advanced analytical techniques, often leading to tighter bounds and broader applicability in numerical integration and special means [2,3,4]. Furthermore, many researchers have devoted their efforts to establish fractional versions of Simpson-type inequality, see [5,6,7,8,9].
In parallel with these developments, researchers have recognized that the classical notion of convexity is often too restrictive for modeling real-world phenomena or capturing the behavior of functions arising in applied contexts. This has led to the introduction of numerous generalized convexity concepts, each relaxing or modifying the standard definition to accommodate broader classes of functions while preserving some of the analytical tractability of convexity. Notable examples include s-convexity, quasi-convexity, log-convexity, P-convexity, and harmonic convexity.
Harmonically convex functions were first systematically studied by İşcan in [10] as a natural counterpart to classical convexity when the argument of the function is transformed via the reciprocal map. A function ϕ : I R { 0 } R is said to be harmonically convex if for all i 1 , i 2 I and [ 0 , 1 ] ,
ϕ i 1 i 2 i 1 + ( 1 ) i 2 ϕ ( i 1 ) + ( 1 ) ϕ ( i 2 ) .
In the same paper, the author established the Hermite–Hadamard inequality for harmonically convex functions: if ϕ : [ a , b ] R { 0 } R is harmonically convex, then
ϕ 2 a b a + b a b b a b a ϕ ( ν ) ν 2 d ν ϕ ( a ) + ϕ ( b ) 2 .
Here, the harmonic mean 2 a b a + b naturally replaces the arithmetic mean a + b 2 , reflecting the reciprocal structure inherent in harmonic convexity.
Recently, the intersection of generalized convexity and fractional calculus has become a vibrant area of research in recent years. Fractional integrals, such as the Riemann–Liouville [11], Hadamard [12], Katugampola [13], and conformable fractional integrals [14], offer refined tools for modeling memory effects, nonlocal phenomena, and anomalous diffusion. By replacing the classical integral in the Hermite–Hadamard inequality with a fractional integral operator, researchers have obtained fractional Hermite–Hadamard-type inequalities for various classes of convex functions, including harmonically convex, harmonically s-convex functions, and p-harmonic functions (see, e.g., [15,16,17,18,19,20,21]).
In [22], İşcan and Wu established the following Hermite–Hadamard inequalities for harmonically convex functions via fractional integrals: If the function ϕ : [ a , b ] R { 0 } R is harmonically convex, then
ϕ 2 a b a + b Γ α + 1 2 a b b a α R 1 a α ϕ ψ 1 b + R 1 b + α ϕ ψ 1 a ϕ ( a ) + ϕ ( b ) 2 ,
where ψ ( ν ) = 1 ν , and R σ + α and R σ α denote the left and right Riemann-Liouville fractional integrals [11].
İşcan in [23] presented the following Simpson-type inequality for differentiable harmonically convex functions:
1 6 ϕ a + 4 ϕ 2 a b a + b + ϕ b a b b a b a ϕ ν ν 2 d ν a b b a 2 b 2 a 2 + 4 a 2 b 4 a 2 4 a b 3 a ( a + b ) ( b a ) 3 + 5 a + 7 b + 11 a 2 b 2 10 a b 3 ( b a ) 4 ln 18 a ( a + b ) ( 5 a + b ) 2 ϕ a + ϕ b .
Motivated by the aforementioned studies, this paper aims to establish new Riemann–Liouville fractional Simpson-type inequalities for differentiable harmonically convex functions.
The remainder of this paper is organized as follows: Section 2 recalls essential definitions and preliminary results related to fractional calculus and certain special functions. In Section 3, we present some auxiliary results that are essential for the proofs of our main theorems. Section 4 introduces a novel fractional integral identity, which plays a central role in establishing the inequalities presented in this work. In Section 5, we establish our main result in a form of Riemann–Liouville fractional Simpson-type inequalities based on harmonic convexity. Section 6 provides a numerical example with a graphical illustration that confirm the validity of the theoretical findings. Section 7 discusses practical applications of the derived inequalities, and Section 8 concludes the paper with remarks on possible extensions and future directions.

2. Preliminaries

To ensure self-containment and fix notation, this section recalls key definitions and foundational results concerning Riemann–Liouville fractional integrals and special functions that will be frequently used throughout the paper.
Definition 1
([11]). Let ϕ L 1 [ a , b ] . The Riemann-Liouville fractional integrals R a + α ϕ and R b α ϕ of order α > 0 with a 0 are defined by
R a + α ϕ ( x ) = 1 Γ α a x x α 1 ϕ ( ) d , x > a , R b α ϕ ( x ) = 1 Γ α x b x α 1 ϕ ( ) d , b > x ,
respectively, where Γ ( α ) = 0   e α 1 d , is the Gamma function and R a + 0 ϕ ( x ) = R b 0 ϕ ( x ) = ϕ ( x ) .
Definition 2
([24,25]). The Beta function, denoted B ( u , v ) , is a special function defined for real (or complex) numbers R e ( u ) > 0 and R e ( v ) > 0 by the integral
B ( u , v ) = 1 0 u 1 ( 1 t ) 1 d .
It is symmetric, i.e., B ( u , v ) = B ( v , u ) , and is closely related to the Gamma function via the identity
B ( u , v ) = Γ ( u ) Γ ( v ) Γ ( u + v ) .
Definition 3
([24,25]). The integral representation of the hypergeometric function is defined as follows:
F 1 2 a , b , c ; z = 1 B b , c b 1 0 b 1 1 c b 1 1 z a d ,
where c > b > 0 , | z | < 1 and B . , . is the Beta function.

3. Auxiliary Results

In what follows, we use the following notations
J α + 1 a , b , ς , τ = τ ς α + 1 1 a + b 2 d = τ α + 2 F 1 2 2 , 1 , α + 3 , τ b a a + τ b a α + 2 a + τ b a 2 ς α + 2 F 1 2 2 , 1 , α + 3 , ς b a a + ς b a α + 2 a + ς b a 2 ,
with
J 0 a , b , ς , τ = τ ς 1 1 a + b 2 d = τ ς a + τ b a a + ς b a
and
J 1 a , b , ς , τ = τ ς 1 a + b 2 d = 1 b a ln a + τ b a a + ς b a a τ ς a + τ b a a + ς b a .
K α + 1 a , b , ς , τ = τ ς α + 1 a + 1 b 2 d = τ α + 2 F 1 2 2 , α + 2 , α + 3 , τ b a b α + 2 b 2 ς α + 2 F 1 2 2 , α + 2 , α + 3 , ς b a b α + 2 b 2 ,
with
K 0 a , b , ς , τ = τ ς 1 a + 1 b 2 d = τ ς b ς b a b τ b a
and
K 1 a , b , ς , τ = τ ς a + 1 b 2 d = 1 b a ln b + τ a b b b a ς + b τ ς b ς b a b τ b a .
C 1 a , b , α = 1 2 0 1 6 α 1 a + b 2 d = 1 6 J 1 a , b , 0 , 1 6 1 α J α + 1 a , b , 0 , 1 6 1 α + J α + 1 a , b , 1 6 1 α , 1 2 1 6 J 1 a , b , 1 6 1 α , 1 2 if α ln 6 ln 2 , 1 6 J 1 a , b , 0 , 1 2 J α + 1 a , b , 0 , 1 2 if α > ln 6 ln 2 ,
C 2 a , b , α = 1 2 0 1 6 α 1 a + 1 b 2 d = 1 6 K 0 a , b , 0 , 1 6 1 α 1 6 K 1 a , b , 0 , 1 6 1 α K α a , b , 0 , 1 6 1 α + K α + 1 a , b , 0 , 1 6 1 α + K α + 1 a , b , 1 6 1 α , 1 2 K α a , b , 1 6 1 α , 1 2 1 6 K 0 a , b , 1 6 1 α , 1 2 + 1 6 K 1 a , b , 1 6 1 α , 1 2 if α ln 6 ln 2 , 1 6 K 0 a , b , 0 , 1 2 1 6 K 1 a , b , 0 , 1 2 K α a , b , 0 , 1 2 + K α + 1 a , b , 0 , 1 2 if α > ln 6 ln 2 ,
C 3 a , b , α = 1 1 2 5 6 α 1 a + b 2 d = J α + 1 a , b , 0 , 1 2 5 6 J 1 a , b , 0 , 1 2 if α ln 6 ln 5 ln 2 , 5 6 J 1 a , b , 0 , 5 6 1 α J α + 1 a , b , 0 , 5 6 1 α + J α + 1 a , b , 5 6 1 α , 1 2 5 6 J 1 a , b , 5 6 1 α , 1 2 if α > ln 6 ln 5 ln 2 ,
C 4 a , b , α = 1 1 2 5 6 α 1 a + 1 b 2 d = 5 6 K 0 a , b , 1 2 , 1 5 6 K 1 a , b , 1 2 , 1 K α a , b , 1 2 , 1 + K α + 1 a , b , 1 2 , 1 if α ln 6 ln 5 ln 2 , 5 6 K 0 a , b , 5 6 1 α , 1 5 6 K 1 a , b , 5 6 1 α , 1 K α a , b , 5 6 1 α , 1 + K α + 1 a , b , 5 6 1 α , 1 + K α a , b , 5 6 1 α , 1 K α + 1 a , b , 5 6 1 α , 1 5 6 K 0 a , b , 5 6 1 α , 1 + 5 6 K 1 a , b , 5 6 1 α , 1 if α < ln 6 ln 5 ln 2 ,
C 5 a , b , α = 1 2 0 1 6 α 1 1 a + b 2 d = 1 6 J 0 a , b , 0 , 1 6 1 α 1 6 J 1 a , b , 0 , 1 6 1 α J α a , b , 0 , 1 6 1 α + J α + 1 a , b , 0 , 1 6 1 α + J α a , b , 1 6 1 α , 1 2 J α + 1 a , b , 1 6 1 α , 1 2 1 6 J 0 a , b , 1 6 1 α , 1 2 + 1 6 J 1 a , b , 1 6 1 α , 1 2 if α ln 6 ln 2 , 1 6 J 0 a , b , 0 , 1 2 1 6 J 1 a , b , 0 , 1 2 J α a , b , 0 , 1 2 + J α + 1 a , b , 0 , 1 2 if α > ln 6 ln 2 ,
C 6 a , b , α = 1 2 0 1 6 α a + 1 b 2 d = 1 6 K 1 a , b , 0 , 1 6 1 α K α + 1 a , b , 0 , 1 + K α + 1 a , b , 1 6 1 α , 1 2 1 6 K 1 a , b , 1 6 1 α , 1 2 if α ln 6 ln 2 , 1 6 K 1 a , b , 0 , 1 2 K α + 1 a , b , 0 , 1 2 if α > ln 6 ln 2 ,
C 7 a , b , α = 1 1 2 5 6 α 1 1 a + b 2 d = J α a , b , 1 2 , 1 J α + 1 a , b , 1 2 , 1 5 6 J 0 a , b , 1 2 , 1 + 5 6 J 1 a , b , 1 2 , 1 if α ln 6 ln 5 ln 2 , 5 6 J 0 a , b , 1 2 , 5 6 1 α 5 6 J 1 a , b , 1 2 , 5 6 1 α J α a , b , 1 2 , 5 6 1 α + J α + 1 a , b , 1 2 , 5 6 1 α + J α a , b , 5 6 1 α , 1 J α + 1 a , b , 5 6 1 α , 1 5 6 J 0 a , b , 5 6 1 α , 1 + 5 6 J 1 a , b , 5 6 1 α , 1 if α > ln 6 ln 5 ln 2
and
C 8 a , b , α = 1 1 2 5 6 α a + 1 b 2 d = K α + 1 a , b , 1 2 , 1 5 6 K 1 a , b , 1 2 , 1 if α ln 6 ln 5 ln 2 , 5 6 K 1 a , b , 1 2 , 5 6 1 α K α + 1 a , b , 1 2 , 5 6 1 α + K α + 1 a , b , 5 6 1 α , 1 5 6 K 1 a , b , 5 6 1 α , 1 if α > ln 6 ln 5 ln 2 ,
where J α + 1 a , b , ς , τ and K α + 1 a , b , ς , τ are defined as in (1) and (2), respectively.

4. New Riemann–Liouville Fractional Integral Identity

The derivation of our main inequalities relies crucially on a new integral identity involving the Riemann–Liouville fractional integrals.
Lemma 1.
Let ϕ : I R 0 R be a differentiable mapping on I (the interior of I ). If ϕ is integrable on a , b where a , b I with a < b , then the following equality
1 6 ϕ a + 4 ϕ 2 a b a + b + ϕ b Γ α + 1 2 a b b a α R 1 a α ϕ ψ 1 b + R 1 b + α ϕ ψ 1 a = a b b a 2 1 2 0 1 6 α 1 a + b 2 ϕ a b 1 a + b 1 6 α a + 1 b 2 ϕ a b a + 1 b d + 1 1 2 5 6 α 1 a + b 2 ϕ a b 1 a + b 5 6 α a + 1 b 2 ϕ a b a + 1 b d
holds where ψ ν = 1 ν .
Proof. 
Let
N 1 = 1 2 0 1 6 α 1 a + b 2 ϕ a b 1 a + b 1 6 α a + 1 b 2 ϕ a b a + 1 b d
and
N 2 = 1 1 2 5 6 α 1 a + b 2 ϕ a b 1 a + b 5 6 α a + 1 b 2 ϕ a b a + 1 b d .
Integrating by parts, N 1 we obtain
N 1 = 1 2 0 1 6 α 1 a + b 2 ϕ a b 1 a + b 1 6 α a + 1 b 2 ϕ a b a + 1 b d = 1 a b b a 1 6 α ϕ a b 1 a + b + ϕ a b a + 1 b 0 1 2 α a b b a 1 2 0 α 1 ϕ a b 1 a + b + ϕ a b a + 1 b d = 2 a b b a 1 2 α 1 6 ϕ 2 a b a + b + 1 a b b a 1 6 ϕ b + ϕ a α a b b a 1 2 0 α 1 ϕ a b 1 a + b d + 1 2 0 α 1 ϕ a b a + 1 b d .
Similarly, we have
N 2 = 1 1 2 5 6 α 1 a + b 2 ϕ a b 1 a + b 5 6 α a + 1 b 2 ϕ a b a + 1 b d = 1 a b b a 5 6 α ϕ a b 1 a + b + ϕ a b a + 1 b 1 2 1 α a b b a 1 1 2 α 1 ϕ a b 1 a + b + ϕ a b a + 1 b d = 1 a b b a 1 6 ϕ a + ϕ b 2 a b b a 1 2 α 5 6 ϕ 2 a j a + b α a b b a 1 1 2 α 1 ϕ a b 1 a + b d + 1 1 2 α 1 ϕ a b a + 1 b d .
Adding (10) and (11), we get
N 1 + N 2 = 2 a b b a 1 6 ϕ a + 2 3 ϕ 2 a b a + b + 1 6 ϕ b α a b b a 1 0 α 1 ϕ a b 1 a + b d + 1 0 α 1 ϕ a b a + 1 b d .
Using appropriate changes of variable, we obtain
1 0 α 1 ϕ a b 1 a + b d = a b b a α b a 1 μ 1 b α 1 ϕ μ d μ μ 2 = a b b a α 1 a 1 b u 1 b α 1 ϕ 1 u d u .
Similarly, we get
1 0 α 1 ϕ a b a + 1 b d = a b b a α b a 1 a 1 μ α 1 ϕ μ d μ μ 2 = a b b a α 1 a 1 b 1 a ν α 1 ϕ 1 ν d ν .
Combining (12)–(14), we get
N 1 + N 2 = 1 3 a j b a ϕ a + 4 ϕ 2 a b a + b + ϕ b Γ α + 1 a b b a a b b a α 1 Γ α 1 a 1 b ν 1 b α 1 ϕ 1 ν d ν + 1 Γ α 1 a 1 b 1 a ν α 1 ϕ 1 ν d ν .
Multiplying (15) by a b b a 2 , we obtain
a b b a 2 N 1 + N 2 = 1 6 ϕ a + 4 ϕ 2 a b a + b + ϕ b Γ α + 1 2 a b b a α R 1 a α ϕ ψ 1 b + R 1 b + α ϕ ψ 1 a ,
which is the desired result. □

5. Fractional Simpson-Type Inequality via Harmonic Convexity

Building upon the lemma developed in the previous section, we now present our principal contribution: a family of Simpson-type inequalities in the setting of Riemann–Liouville fractional calculus for differentiable harmonically convex functions.
Theorem 1.
Let ϕ : I R 0 R be a differentiable function on I , a , b I with a < b , and ϕ L [ a , b ] . If ϕ is harmonically convex on a , b , then we have
1 6 ϕ a + 4 ϕ 2 a b a + b + ϕ b Γ α + 1 2 a b b a α R 1 a α ϕ ψ 1 b + R 1 b + α ϕ ψ 1 a a b b a 2 S 1 a , b , α ϕ a + S 2 a , b , α ϕ b ,
where ψ ν = 1 ν .
Here S 1 ( a , b , α ) = i = 1 4 C i ( a , b , α ) and S 2 ( a , b , α ) = i = 5 8 C i ( a , b , α ) , where C i ( a , b , α ) ( i = 1 , , 8 ) are defined as in (3)–(10), respectively.
Proof. 
From Lemma 1, absolute value and harmonic convexity of ϕ , we have
1 6 ϕ a + 4 ϕ 2 a b a + b + ϕ b Γ α + 1 2 a b b a α R 1 a α ϕ ψ 1 b + R 1 b + α ϕ ψ 1 a a b b a 2 1 2 0 1 6 α 1 a + b 2 ϕ a b 1 a + b + 1 6 α a + 1 b 2 ϕ a b a + 1 b d + 1 1 2 5 6 α 1 a + b 2 ϕ a b 1 a + b + 5 6 α a + 1 b 2 ϕ a b a + 1 b d a b b a 2 1 2 0 1 6 α 1 a + b 2 ϕ a + 1 ϕ b + 1 6 α a + 1 b 2 1 ϕ a + ϕ b d + 1 1 2 5 6 α 1 a + b 2 ϕ a + 1 ϕ b + 5 6 α a + 1 b 2 1 ϕ a + ϕ b d = a b b a 2 1 2 0 1 6 α 1 a + b 2 + 1 6 α 1 a + 1 b 2 d + 1 1 2 5 6 α 1 a + b 2 + 5 6 α 1 a + 1 b 2 d ϕ a + 1 2 0 1 6 α 1 1 a + b 2 + 1 6 α a + 1 b 2 + 1 1 2 5 6 α 1 1 a + b 2 + 5 6 α a + 1 b 2 d ϕ b = a b b a 2 C 1 a , b , α + C 2 a , b , α + C 3 a , b , α + C 4 a , b , α ϕ a + C 5 a , b , α + C 6 a , b , α + C 7 a , b , α + C 8 a , b , α ϕ b ,
where we have used (3)–(10). This completes the proof. □
Corollary 1.
By choosing α = 1 , Theorem 1 becomes
1 6 ϕ a + 4 ϕ 2 a b a + b + ϕ b a b b a b a ϕ ν ν 2 d ν a b 12 1 b + 11 a + b b a 2 ln 5 a + b 2 18 a a + b + 7 a + 5 b b a 2 ln a + 5 b 2 18 b a + b ϕ a + 1 a + 5 a + 7 b b a 2 ln 18 a a + b 5 a + b 2 + a + 11 b b a 2 ln 18 b a + b a + 5 b 2 ϕ b .
Theorem 2.
Let ϕ : I R 0 R be a differentiable function on I , a , b I with a < b , and ϕ L [ a , b ] . If ϕ q is harmonically convex on a , b where q > 1 with 1 p + 1 q = 1 , then we have
1 6 ϕ a + 4 ϕ 2 a b a + b + ϕ b Γ α + 1 2 a b b a α R 1 a α ϕ ψ 1 b + R 1 b + α ϕ ψ 1 a a b b a 2 T 1 α , p 1 p + T 4 α , p 1 p ϕ a q + 3 ϕ b q 8 1 q + T 2 α , p 1 p + T 3 α , p 1 p 3 ϕ a q + ϕ b q 8 1 q ,
where ψ ν = 1 ν , and
T 1 α , p = 1 2 0 1 6 α p 1 a + b 2 p d ,
T 2 α , p = 1 2 0 1 6 α p a + 1 b 2 p d ,
T 3 α , p = 1 1 2 5 6 α p 1 a + b 2 p d
and
T 4 α , p = 1 1 2 5 6 α p a + 1 b 2 p d .
Proof. 
From Lemma 1, absolute value, Hölder’s inequality and harmonic convexity of ϕ q , we have
1 6 ϕ a + 4 ϕ 2 a b a + b + ϕ b Γ α + 1 2 a b b a α R 1 a α ϕ ψ 1 b + R 1 b + α ϕ ψ 1 a a b b a 2 1 2 0 1 6 α p 1 a + b 2 p 1 p 1 2 0 ϕ a b 1 a + b q d 1 q + 1 2 0 1 6 α p a + 1 b 2 p 1 p 1 2 0 ϕ a b a + 1 b q d 1 q + 1 1 2 5 6 α p 1 a + b 2 p d 1 p 1 1 2 ϕ a b 1 a + b q d 1 q + 1 1 2 5 6 α p a + 1 b 2 p d 1 p 1 1 2 ϕ a b a + 1 b q d 1 q a b b a 2 T 1 α , p 1 p 1 2 0 ϕ a q + 1 ϕ b q d 1 q + T 2 α , p 1 p 1 2 0 1 ϕ a q + ϕ b q d 1 q + T 3 α , p 1 p 1 1 2 ϕ a q + 1 ϕ b q d 1 q + T 4 α , p 1 p 1 1 2 1 ϕ a q + ϕ b q d 1 q = a b b a 2 T 1 α , p 1 p ϕ a q + 3 ϕ b q 8 1 q + T 2 α , p 1 p 3 ϕ a q + ϕ b q 8 1 q + T 3 α , p 1 p 3 ϕ a q + ϕ b q 8 1 q + T 4 α , p 1 p ϕ a q + 3 ϕ b q 8 1 q = a b b a 2 T 1 α , p 1 p + T 4 α , p 1 p ϕ a q + 3 ϕ b q 8 1 q + T 2 α , p 1 p + T 3 α , p 1 p 3 ϕ a q + ϕ b q 8 1 q ,
where we have used (16)–(19). □
Theorem 3.
Let ϕ : I R 0 R be a differentiable function on I , a , b I with a < b , and ϕ L [ a , b ] . If ϕ q is harmonically convex on a , b where q > 1 , then we have
1 6 ϕ a + 4 ϕ 2 a b a + b + ϕ b Γ α + 1 2 a b b a α R 1 a α ϕ ψ 1 b + R 1 b + α ϕ ψ 1 a a b b a 2 E 1 a , b , α 1 1 q C 1 a , b , α ϕ a q + C 5 a , b , α ϕ b q 1 q + E 2 a , b , α 1 1 q C 2 a , b , α ϕ a q + C 6 a , b , α ϕ b q 1 q + E 3 a , b , α 1 1 q C 3 a , b , α ϕ a q + C 7 a , b , α ϕ b q 1 q + E 4 a , b , α 1 1 q C 4 a , b , α ϕ a q + C 8 a , b , α ϕ b q 1 q ,
where ψ ν = 1 ν , and
E i a , b , α = C i a , b , α + C i + 4 a , b , α
with C i a , b , α are defined as in (3)–(10), respectively.
Proof. 
From (1), absolute value, power mean inequality and harmonic convexity of ϕ q , we have
1 6 ϕ a + 4 ϕ 2 a b a + b + ϕ b Γ α + 1 2 a b b a α R 1 a ϕ ψ 1 b + R 1 b + ϕ ψ 1 a a b b a 2 1 2 0 1 6 α 1 a + b 2 d 1 1 q 1 2 0 1 6 α 1 a + b 2 ϕ a b 1 a + b q d 1 q + 1 2 0 1 6 α a + 1 b 2 d 1 1 q 1 2 0 1 6 α a + 1 b 2 ϕ a b a + 1 b q d 1 q + 1 1 2 5 6 α 1 a + b 2 d 1 1 q 1 1 2 5 6 α 1 a + b 2 ϕ a b 1 a + b q d 1 q + 1 1 2 5 6 α a + 1 b 2 d 1 1 q 1 1 2 5 6 α a + 1 b 2 ϕ a b a + 1 b q d 1 q a b b a 2 1 2 0 1 6 α 1 a + b 2 d 1 1 q × 1 2 0 1 6 α 1 a + b 2 ϕ a q + 1 ϕ b q d 1 q + 1 2 0 1 6 α a + 1 b 2 d 1 1 q 1 2 0 1 6 α a + 1 b 2 1 ϕ a q + ϕ b q d 1 q + 1 1 2 5 6 α 1 a + b 2 d 1 1 q 1 1 2 5 6 α 1 a + b 2 ϕ a q + 1 ϕ b q d 1 q + 1 1 2 5 6 α a + 1 b 2 d 1 1 q 1 1 2 5 6 α a + 1 b 2 1 ϕ a q + ϕ b q d 1 q = a b b a 2 E 1 a , b , α 1 1 q C 1 a , b , α ϕ a q + C 5 a , b , α ϕ b q 1 q + E 2 a , b , α 1 1 q C 2 a , b , α ϕ a q + C 6 a , b , α ϕ b q 1 q + E 3 a , b , α 1 1 q C 3 a , b , α ϕ a q + C 7 a , b , α ϕ b q 1 q + E 4 a , b , α 1 1 q C 4 a , b , α ϕ a q + C 8 a , b , α ϕ b q 1 q ,
where we have used (3)–(10). This completes the proof. □

6. Numerical Example

To corroborate the validity of the inequality stated in Theorem 1, we provide a concrete numerical instance together with a visual representation that aligns with the theoretical prediction.
Example 1.
Consider a = 1 , b = 2 , and the function
ϕ ( ν ) = ν 2 2 , ν [ 1 , 2 ] .
Its derivative ϕ ( ν ) = ν is harmonically convex on ( 0 , ) (see [10]).
For this setting, the left-hand side (LHS) of the inequality in Theorem 1 reads
LHS ( α ) = 1 2 11 6 1 2   F 1 2 2 , α ; α + 1 ; 1 2 2   F 1 2 2 , α ; α + 1 ; 1 .
The right-hand side (RHS) is explicitly expressed as
RHS ( α ) = S 1 ( 1 , 2 , α ) + 2 S 2 ( 1 , 2 , α ) ,
where the terms S 1 = i = 1 4 C i ( 1 , 2 , α ) and S 2 = i = 5 8 C i ( 1 , 2 , α ) , with C i ( i = 1 , , 8 ) are defined as in (3)–(10), respectively.
Employing symbolic manipulation and high-precision numerical evaluation, we compute LHS ( α ) and RHS ( α ) over the parameter interval α ( 0 , 10 ] . The computed surfaces, shown in Figure 1, demonstrate that LHS ( α ) RHS ( α ) across the entire sampled domain, offering numerical confirmation of both the correctness and tightness of the derived inequality.

7. Applications

Beyond their theoretical interest, the fractional Simpson-type inequalities derived in this work find natural applications in approximation theory and numerical analysis. In this section, we discuss how these estimates can be employed for special means. Let us recall the following means for arbitrary real numbers a , b :
The Arithmetic mean: a a , b = a + b 2 .
The Harmonic mean: H a , b = 2 a b a + b and H a , b , c = 3 1 a + 1 b + 1 c .
The Geometric mean: G a , b = a b .
The Logarithmic mean: L a , b = b a ln b ln a , a , b > 0 , a b .
Proposition 1.
Let a , b R with 0 < a < b , then we have
2 A a 2 , b 2 + 4 H 2 a , b 6 G 2 a , b L 1 a , b b 2 a 2 + a b 11 a + 7 b b a ln 18 a a + b 5 a + b 2 + a b 7 a + 11 b b a ln 18 b a + b a + 5 b 2 .
Proof. 
The assertion follows from Corollary 1, applied to the function ϕ ν = ν 2 . □
Proposition 2.
Let a , b R with 0 < a < b , then we have
2 A a 2 , b 2 + 4 H 2 a , b 6 G 2 a , b L 1 a , b b a 2 + 3 a b b a ln 18 a a + b 5 a + b 2 + 3 a b b a ln 18 b a + b a + 5 b 2 .
Proof. 
The assertion follows from Corollary 1, applied to the function ϕ ν = ν . □

8. Conclusions

In conclusion, we have successfully introduced a new fractional integral identity adapted to harmonic convexity and employed it to derive Riemann–Liouville fractional Simpson-type inequalities. The validity of our theoretical findings is confirmed through a concrete numerical example with graphical support. Future research may explore extensions to other fractional operators (e.g., Caputo, Hadamard) or higher-dimensional settings.

Author Contributions

Conceptualization, L.L., A.L. and H.X.; methodology, B.M.; validation, B.M.; formal analysis, L.L., A.L. and H.X.; investigation, L.L., A.L. and H.X.; resources, B.M.; writing—original draft preparation, L.L., A.L. and B.M.; writing—review and editing, L.L., A.L., H.X. and B.M.; visualization, H.X.; supervision, B.M.; project administration, L.L., A.L. and H.X. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

No new data were created or analyzed in this study.

Conflicts of Interest

The authors have no competing interests to disclose.

References

  1. Sarikaya, M.Z.; Set, E.; Özdemir, M.E. On new inequalities of Simpson’s type for convex functions. RGMIA Res. Rep. Coll. 2010, 13, 2. [Google Scholar] [CrossRef]
  2. Alomari, M.; Darus, M.; Dragomir, S.S. New inequalities of Simpson’s type for s-convex functions with applications. RGMIA Res. Rep. Coll. 2009, 4, 12. [Google Scholar]
  3. Sarikaya, M.Z.; Set, E.; Özdemir, M.E. On new inequalities of Simpson’s type for functions whose second derivatives absolute values are convex. J. Appl. Math. Stat. Inform. 2013, 9, 37–45. [Google Scholar] [CrossRef]
  4. Sarikaya, M.Z.; Bardak, S. Generalized Simpson type integral inequalities. Konuralp J. Math. 2019, 7, 186–191. [Google Scholar]
  5. Alsharari, F.; Fakhfakh, R.; Lakhdari, A. On Fractal–Fractional Simpson-Type Inequalities: New Insights and Refinements of Classical Results. Mathematics 2024, 12, 3886. [Google Scholar] [CrossRef]
  6. Chen, J.; Huang, X. Some new inequalities of Simpson’s type for s-convex functions via fractional integrals. Filomat 2017, 31, 4989–4997. [Google Scholar] [CrossRef]
  7. Iqbal, M.; Qaisar, S.; Hussain, S. On Simpson’s type inequalities utilizing fractional integral. J. Comput. Anal. Appl. 2017, 23, 1137–1145. [Google Scholar]
  8. Luo, C.-Y.; Du, T.S. Generalized Simpson type inequalities involving Riemann-Liouville fractional integrals and their applications. Filomat 2020, 34, 751–760. [Google Scholar] [CrossRef]
  9. Set, E.; Akdemir, A.O.; Özdemir, M.E. Simpson type integral inequalities for convex functions via Riemann-Liouville integrals. Filomat 2017, 31, 4415–4420. [Google Scholar] [CrossRef]
  10. İşcan, İ. Ostrowski type inequalities for harmonically s-convex functions. Konuralp J. Math. 2015, 3, 63–74. [Google Scholar]
  11. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
  12. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives. Theory and Applications; Nikol’skiĭ, S.M., Ed.; Translated from the 1987 Russian Original. Revised by the Authors; Gordon and Breach Science Publishers: Yverdon, Switzerland, 1993. [Google Scholar]
  13. Katugampola, U.N. New approach to a generalized fractional integral. Appl. Math. Comput. 2011, 218, 860–865. [Google Scholar] [CrossRef]
  14. Jarad, F.; Uğurlu, E.; Abdeljawad, T.; Baleanu, D. On a new class of fractional operators. Adv. Difference Equ. 2017, 2017, 247. [Google Scholar] [CrossRef]
  15. Awan, M.U.; Akhtar, N.; Iftikhar, S.; Noor, M.A.; Chu, Y.M. New Hermite–Hadamard type inequalities for n-polynomial harmonically convex functions. J. Inequal. Appl. 2020, 2020, 125. [Google Scholar] [CrossRef]
  16. Butt, S.I.; Umar, M.; Khan, D.; Seol, Y.; Tipurić-Spužević, S. Hermite–Hadamard-type inequalities for harmonically convex functions via proportional Caputo-Hybrid operators with applications. Fractal Fract. 2025, 9, 77. [Google Scholar] [CrossRef]
  17. Latif, M.A.; Kalsoom, H.; Abidin, M.Z. Hermite–Hadamard-type inequalities involving harmonically convex function via the Atangana–Baleanu fractional integral operator. Symmetry 2022, 14, 1774. [Google Scholar] [CrossRef]
  18. Noor, M.A.; Noor, K.I.; Iftikhar, S. Newton inequalities for p-harmonic convex functions. Honam Math. J. 2018, 40, 239–250. [Google Scholar]
  19. Nwaeze, E.R.; Khan, M.A.; Ahmadian, A.; Ahmad, M.N.; Mahmood, A.K. Fractional inequalities of the Hermite-Hadamard type for m-polynomial convex and harmonically convex functions. AIMS Math. 2021, 6, 1889–1904. [Google Scholar] [CrossRef]
  20. Şanlı, Z. Some midpoint type inequalities for Riemann Liouville fractional integrals. Appl. Appl. Math. 2019, 14, 58–73. [Google Scholar]
  21. Noor, M.A.; Noor, K.I.; Iftikhar, S. Some Newton’s type inequalities for harmonic convex functions. J. Adv. Math. Stud. 2016, 9, 7–16. [Google Scholar]
  22. İşcan, İ.; Wu, S.H. Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl. Math. Comput. 2014, 238, 237–244. [Google Scholar] [CrossRef]
  23. İşcan, İ. Hermite-Hadamard and Simpson-like type inequalities for differentiable harmonically convex functions. J. Math. 2014, 2014, 346305. [Google Scholar] [CrossRef]
  24. Andrews, L.C. Special Functions of Mathematics for Engineers, 2nd ed.; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
  25. Rainville, E.D. Special Functions; Chelsea: New York, NY, USA, 1960. [Google Scholar]
Figure 1. Comparison of the left-hand side and right-hand side of the fractional Simpson-type inequality for ϕ ( ν ) = ν 2 / 2 on [ 1 , 2 ] , plotted as functions of α ( 0 , 10 ] . The inequality LHS ( α ) RHS ( α ) is satisfied for all tested values of α .
Figure 1. Comparison of the left-hand side and right-hand side of the fractional Simpson-type inequality for ϕ ( ν ) = ν 2 / 2 on [ 1 , 2 ] , plotted as functions of α ( 0 , 10 ] . The inequality LHS ( α ) RHS ( α ) is satisfied for all tested values of α .
Mathematics 13 03778 g001
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Liao, L.; Lakhdari, A.; Xu, H.; Meftah, B. On Fractional Simpson-Type Inequalities via Harmonic Convexity. Mathematics 2025, 13, 3778. https://doi.org/10.3390/math13233778

AMA Style

Liao L, Lakhdari A, Xu H, Meftah B. On Fractional Simpson-Type Inequalities via Harmonic Convexity. Mathematics. 2025; 13(23):3778. https://doi.org/10.3390/math13233778

Chicago/Turabian Style

Liao, Li, Abdelghani Lakhdari, Hongyan Xu, and Badreddine Meftah. 2025. "On Fractional Simpson-Type Inequalities via Harmonic Convexity" Mathematics 13, no. 23: 3778. https://doi.org/10.3390/math13233778

APA Style

Liao, L., Lakhdari, A., Xu, H., & Meftah, B. (2025). On Fractional Simpson-Type Inequalities via Harmonic Convexity. Mathematics, 13(23), 3778. https://doi.org/10.3390/math13233778

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop