On Fractional Simpson-Type Inequalities via Harmonic Convexity
Abstract
1. Introduction
2. Preliminaries
3. Auxiliary Results
4. New Riemann–Liouville Fractional Integral Identity
5. Fractional Simpson-Type Inequality via Harmonic Convexity
6. Numerical Example
7. Applications
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sarikaya, M.Z.; Set, E.; Özdemir, M.E. On new inequalities of Simpson’s type for convex functions. RGMIA Res. Rep. Coll. 2010, 13, 2. [Google Scholar] [CrossRef]
- Alomari, M.; Darus, M.; Dragomir, S.S. New inequalities of Simpson’s type for s-convex functions with applications. RGMIA Res. Rep. Coll. 2009, 4, 12. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Özdemir, M.E. On new inequalities of Simpson’s type for functions whose second derivatives absolute values are convex. J. Appl. Math. Stat. Inform. 2013, 9, 37–45. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Bardak, S. Generalized Simpson type integral inequalities. Konuralp J. Math. 2019, 7, 186–191. [Google Scholar]
- Alsharari, F.; Fakhfakh, R.; Lakhdari, A. On Fractal–Fractional Simpson-Type Inequalities: New Insights and Refinements of Classical Results. Mathematics 2024, 12, 3886. [Google Scholar] [CrossRef]
- Chen, J.; Huang, X. Some new inequalities of Simpson’s type for s-convex functions via fractional integrals. Filomat 2017, 31, 4989–4997. [Google Scholar] [CrossRef]
- Iqbal, M.; Qaisar, S.; Hussain, S. On Simpson’s type inequalities utilizing fractional integral. J. Comput. Anal. Appl. 2017, 23, 1137–1145. [Google Scholar]
- Luo, C.-Y.; Du, T.S. Generalized Simpson type inequalities involving Riemann-Liouville fractional integrals and their applications. Filomat 2020, 34, 751–760. [Google Scholar] [CrossRef]
- Set, E.; Akdemir, A.O.; Özdemir, M.E. Simpson type integral inequalities for convex functions via Riemann-Liouville integrals. Filomat 2017, 31, 4415–4420. [Google Scholar] [CrossRef]
- İşcan, İ. Ostrowski type inequalities for harmonically s-convex functions. Konuralp J. Math. 2015, 3, 63–74. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives. Theory and Applications; Nikol’skiĭ, S.M., Ed.; Translated from the 1987 Russian Original. Revised by the Authors; Gordon and Breach Science Publishers: Yverdon, Switzerland, 1993. [Google Scholar]
- Katugampola, U.N. New approach to a generalized fractional integral. Appl. Math. Comput. 2011, 218, 860–865. [Google Scholar] [CrossRef]
- Jarad, F.; Uğurlu, E.; Abdeljawad, T.; Baleanu, D. On a new class of fractional operators. Adv. Difference Equ. 2017, 2017, 247. [Google Scholar] [CrossRef]
- Awan, M.U.; Akhtar, N.; Iftikhar, S.; Noor, M.A.; Chu, Y.M. New Hermite–Hadamard type inequalities for n-polynomial harmonically convex functions. J. Inequal. Appl. 2020, 2020, 125. [Google Scholar] [CrossRef]
- Butt, S.I.; Umar, M.; Khan, D.; Seol, Y.; Tipurić-Spužević, S. Hermite–Hadamard-type inequalities for harmonically convex functions via proportional Caputo-Hybrid operators with applications. Fractal Fract. 2025, 9, 77. [Google Scholar] [CrossRef]
- Latif, M.A.; Kalsoom, H.; Abidin, M.Z. Hermite–Hadamard-type inequalities involving harmonically convex function via the Atangana–Baleanu fractional integral operator. Symmetry 2022, 14, 1774. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Iftikhar, S. Newton inequalities for p-harmonic convex functions. Honam Math. J. 2018, 40, 239–250. [Google Scholar]
- Nwaeze, E.R.; Khan, M.A.; Ahmadian, A.; Ahmad, M.N.; Mahmood, A.K. Fractional inequalities of the Hermite-Hadamard type for m-polynomial convex and harmonically convex functions. AIMS Math. 2021, 6, 1889–1904. [Google Scholar] [CrossRef]
- Şanlı, Z. Some midpoint type inequalities for Riemann Liouville fractional integrals. Appl. Appl. Math. 2019, 14, 58–73. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Iftikhar, S. Some Newton’s type inequalities for harmonic convex functions. J. Adv. Math. Stud. 2016, 9, 7–16. [Google Scholar]
- İşcan, İ.; Wu, S.H. Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl. Math. Comput. 2014, 238, 237–244. [Google Scholar] [CrossRef]
- İşcan, İ. Hermite-Hadamard and Simpson-like type inequalities for differentiable harmonically convex functions. J. Math. 2014, 2014, 346305. [Google Scholar] [CrossRef]
- Andrews, L.C. Special Functions of Mathematics for Engineers, 2nd ed.; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Rainville, E.D. Special Functions; Chelsea: New York, NY, USA, 1960. [Google Scholar]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, L.; Lakhdari, A.; Xu, H.; Meftah, B. On Fractional Simpson-Type Inequalities via Harmonic Convexity. Mathematics 2025, 13, 3778. https://doi.org/10.3390/math13233778
Liao L, Lakhdari A, Xu H, Meftah B. On Fractional Simpson-Type Inequalities via Harmonic Convexity. Mathematics. 2025; 13(23):3778. https://doi.org/10.3390/math13233778
Chicago/Turabian StyleLiao, Li, Abdelghani Lakhdari, Hongyan Xu, and Badreddine Meftah. 2025. "On Fractional Simpson-Type Inequalities via Harmonic Convexity" Mathematics 13, no. 23: 3778. https://doi.org/10.3390/math13233778
APA StyleLiao, L., Lakhdari, A., Xu, H., & Meftah, B. (2025). On Fractional Simpson-Type Inequalities via Harmonic Convexity. Mathematics, 13(23), 3778. https://doi.org/10.3390/math13233778

