Polynomial Identities for Binomial Sums of Harmonic Numbers of Higher Order
Abstract
1. Introduction
2. Observation
Some Initial Trials
3. Expressions (Main Results)
4. Proof
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mneimneh, S. A binomial sum of harmonic numbers. Discrete Math. 2023, 346, 6. [Google Scholar] [CrossRef]
- Paule, P.; Schneider, C. Computer proofs of a new family of harmonic number identities. Adv. Appl. Math. 2003, 31, 359–378. [Google Scholar] [CrossRef]
- Spivey, M.Z. Combinatorial sums and finite differences. Discret. Math. 2007, 307, 3130–3146. [Google Scholar] [CrossRef]
- Boyadzhiev, K.N. Harmonic number identities via Euler’s transform. J. Integer Seq. 2009, 12, 8. [Google Scholar]
- Adegoke, K.; Frontczak, R. Combinatorial identities with multiple harmonic-like numbers. AppliedMath 2024, 4, 986–998. [Google Scholar] [CrossRef]
- Komatsu, T.; Wang, P. A generalization of Mneimneh’s binomial sum of harmonic numbers. Discret. Math. 2024, 347, 11. [Google Scholar] [CrossRef]
- Gencev, M. Generalized Mneimneh sums and their application to multiple polylogarithms. Discret. Math. 2025, 348, 11. [Google Scholar] [CrossRef]
- Pan, E.; Xu, C. Mneimneh-type binomial sums of multiple harmonic-type sums. arXiv 2024, arXiv:2403.17952. [Google Scholar]
- Gencev, M. Pan-Xu conjecture and reduction formulas for polylogarithms. arXiv 2024, arXiv:2408.16148. [Google Scholar]
- Choi, J. Summation formulas involving binomial coefficients, harmonic numbers, and generalized harmonic numbers. Abst. Appl. Anal. 2014, 2014, 10. [Google Scholar] [CrossRef]
- Hoffman, M.E. Harmonic-number summation identities, symmetric functions, and multiple zeta values. Ramanujan J. 2017, 42, 501–526. [Google Scholar] [CrossRef]
- Sury, B. Sum of the reciprocals of the binomial coefficients. Eur. J. Comb. 1993, 14, 351–353. [Google Scholar] [CrossRef]
- MacDonald, I.G. Symmetric Functions and Hall Polynomials, 2nd ed.; Clarendon Press: Oxford, UK, 1995. [Google Scholar]
- Chen, X.; Chu, W. The Gauss 2F1(1)-summation theorem and harmonic number identities. Integral Transform. Spec. Funct. 2009, 20, 925–935. [Google Scholar] [CrossRef]
- Coppo, M.; Candelpergher, B. The Arakawa-Kaneko zeta function. Ramanujan J. 2010, 22, 153–162. [Google Scholar] [CrossRef]
- Komatsu, T. Bernoulli numbers with level 2. Aequat. Math. 2024; online first. [Google Scholar] [CrossRef]
- Comtet, L. Advanced Combinatorics; Dordrecht, D., Ed.; Reidel Publishing Company: Dordrecht, The Netherlands, 1974. [Google Scholar]
- Muir, T. The Theory of Determinants in the Historical Order of Development. Four Volumes; Dover Publications: New York, NY, USA, 1960. [Google Scholar]
- Trudi, N. Intorno ad alcune Formole di Sviluppo; Facsimile Publisher: Delhi, India, 1862; pp. 135–143. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komatsu, T.; Sury, B. Polynomial Identities for Binomial Sums of Harmonic Numbers of Higher Order. Mathematics 2025, 13, 321. https://doi.org/10.3390/math13020321
Komatsu T, Sury B. Polynomial Identities for Binomial Sums of Harmonic Numbers of Higher Order. Mathematics. 2025; 13(2):321. https://doi.org/10.3390/math13020321
Chicago/Turabian StyleKomatsu, Takao, and B. Sury. 2025. "Polynomial Identities for Binomial Sums of Harmonic Numbers of Higher Order" Mathematics 13, no. 2: 321. https://doi.org/10.3390/math13020321
APA StyleKomatsu, T., & Sury, B. (2025). Polynomial Identities for Binomial Sums of Harmonic Numbers of Higher Order. Mathematics, 13(2), 321. https://doi.org/10.3390/math13020321