Two Versions of Dunkl Linear Canonical Wavelet Transforms and Applications
Abstract
1. Introduction
2. Linear Canonical Dunkl Transform
2.1. Dunkl Operators
- For every and ,
- For every , , and
- For any ,
- For every ,
- Parseval-type relation: For all ,
- Plancherel-type relation: For every ,
- For every ,
- For every ,
- For every ,
- 1.
- If , then for every ,
- 2.
- If is positive, then
- 3.
- For every ,
- 1.
- If and then belongs to and
- 2.
- In the case of , we have for all and , the function , such that
- 3.
- If , then if and only if , and
- 4.
- If , then
2.2. LCDT
- We have
- For every ,
- For every , satisfies
- For all ,
- For each ,
2.2.1. LCDT on ,
- For all ,
- We have
- The LCDT belongs to , such that
- 1.
- For all ,
- 2.
- Plancherel-type formula: If , then , such that
- 3.
- Parseval-type formula: For all ,
- 4.
- Inversion formula: For all with
2.2.2. Generalized Convolution Product
- and
- For every
- The operator is continuous from onto , onto itself, onto itself, and on , such that, for every ,
- In the case of , for every , ,
- For every or ,
- For every
- For every ,
- For every ,
- If and , then
- If and , then
- If and , then
- If , then
- If then
3. The DLCWT
- For ,
- For ,
- For ,
- For any ,
- If , , then for any
- Let and . We have
- Let , for any and
3.1. Composition of Wavelets
3.2. Time-Invariant Filter
3.3. The Generalized Linear Canonical Hausdorff Operator
4. Dunkl Linear Canonical P-Wavelet Packets
- (i)
- The function belongs to ;
- (ii)
- There exists a function such that
5. Scale-Discrete Scaling Function on
- (i)
- For every and ,
- (ii)
- For every , there exists a unique function (called the scale-discrete scaling function), such that
- (i)
- For all ,
- (ii)
- For every ,
- (i)
- For all ,
- (ii)
- For all ,
- (i)
- For almost every ,
- (ii)
- For almost every and all ,
6. Dunkl Linear Canonical Modified Wavelet Packets
- (i)
- The functions and belong to .
- (ii)
- The functions and belong to , such that
- (iii)
- For almost every , we have
7. Dunkl Linear Canonical S-Wavelet Packet
- (i)
- For every , is real-valued.
- (ii)
- For almost every ,
- (i)
- For almost all ,
- (ii)
- For almost all and all ,
8. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bracewell, R. The Fourier Transform and Its Applications; McGraw-Hill Book Co.: New York, NY, USA, 1986. [Google Scholar]
- Howe, R. The Oscillator Semigroup. In The Mathematical Heritage of Hermann Weyl; American Mathematical Society: Providence, RI, USA, 1988. [Google Scholar]
- De Bie, H. Clifford algebras, Fourier transforms, and quantum mechanics. Math. Methods Appl. Sci. 2012, 35, 2198–2228. [Google Scholar] [CrossRef]
- Dunkl, C.F. Differential-difference operators associated to reflection groups. Trans. Am. Math. Soc. 1989, 311, 167–183. [Google Scholar] [CrossRef]
- Jafarov, E.I.; Stoilova, N.I.; Van der Jeugt, J. The su(2)α Hahn oscillator and a discrete Hahn-Fourier transform. J. Phys. A Math. Theor. 2011, 44, 355205. [Google Scholar] [CrossRef]
- De Bie, H.; Xu, Y. On the Clifford-Fourier transform. Int. Math. Res. Not. 2011, 22, 5123–5163. [Google Scholar] [CrossRef]
- Dunkl, C.F. Hankel transforms associated to finite reflection groups. Contemp. Math. 1992, 138, 123–138. [Google Scholar]
- Ben Salem, N.; Garna, A.; Kallel, S. Bessel and Flett potentials associated with Dunkl operators on RN. Methods Appl. Anal. 2008, 15, 477–494. [Google Scholar] [CrossRef]
- Bouzeffour, F. On the norm of the LpDunkl transform. Appl. Anal. 2015, 94, 761–779. [Google Scholar] [CrossRef]
- Ghazouani, S.; Bouzeffour, F. Heisenberg uncertainty principle for a fractional power of the Dunkl transform on the real line. J. Comput. Appl. Math. 2016, 294, 151–176. [Google Scholar] [CrossRef]
- Gallardo, L.; Trimèche, K. An Lp Version of Hardy’s theorem for the Dunkl transform. J. Aust. Math. Soc. 2004, 77, 371–385. [Google Scholar] [CrossRef]
- Gorbachev, D.; Ivanov, V.; Tikhonov, S. Sharp Pitt inequality and logarithmic uncertainty principle for Dunkl transform in L2. J. Approx. Theory 2016, 202, 109–118. [Google Scholar] [CrossRef]
- Ghobber, S. Dunkl Gabor transform and time-frequency concentration. Czechoslov. Math. J. 2015, 65, 255–270. [Google Scholar] [CrossRef]
- Mejjaoli, H.; Trimèche, K. Spectrum of functions for the Dunkl transform on . Fract. Calc. Appl. Anal. 2007, 10, 19–38. [Google Scholar]
- Rösler, M. Positivity of Dunkl’s intertwining operator. Duke Math. J. 1999, 98, 445–463. [Google Scholar] [CrossRef]
- Trimèche, K. Inversion of the Dunkl intertwining operator and its dual using Dunkl wavelet. Rocky Mt. J. Math. 2002, 32, 889–918. [Google Scholar] [CrossRef]
- Rösler, M. A positive radial product formula for the Dunkl kernel. Trans. Am. Math. Soc. 2003, 355, 2413–2438. [Google Scholar] [CrossRef]
- Thangavelu, S.; Xu, Y. Convolution operator and maximal functions for Dunkl transform. J. Anal. Math. 2005, 97, 25–56. [Google Scholar] [CrossRef]
- Ghazouani, S.; Soltani, A.; Fitouhi, A. A unified class of integral transforms related to the Dunkl transform. J. Math. Anal. Appl. 2017, 449, 1797–1849. [Google Scholar] [CrossRef]
- Mejjaoli, H. Linear canonical Dunkl Wigner transformation: Theory and localization operators. J. Pseudo-Differ. Oper. Appl. 2025, 16, 65. [Google Scholar] [CrossRef]
- Collins, J. Lens-system diffraction integral written in terms of matrix optics. J. Opt. Soc. Am. 1970, 60, 1168–1177. [Google Scholar] [CrossRef]
- Moshinsky, M.; Quesne, C. Linear canonical transformations and their unitary representations. J. Math. Phys. 1971, 12, 1772–1780. [Google Scholar] [CrossRef]
- Titchmarsh, E.C. Introduction to the Theory of Fourier Integrals; Chelsea Publishing Company: New York, NY, USA, 1986. [Google Scholar]
- Almeida, L.B. The fractional Fourier transform and time-frequency representations. IEEE Trans. Signal Process. 1994, 42, 3084–3091. [Google Scholar] [CrossRef]
- James, D.F.V.; Agarwal, G.S. The generalized Fresnel transform and its applications to optics. Opt. Commun. 1996, 126, 207–212. [Google Scholar] [CrossRef]
- Bultheel, A.; Marlinez-Sulbaran, H. Recent development in the theory of the fractional Fourier and linear canonical transforms. Bull. Belg. Math. Soc. Simon Stevin 2006, 13, 971–1005. [Google Scholar] [CrossRef]
- Healy, J.J.; Kutay, M.A.; Ozaktas, H.M.; Sheridan, J.T. Linear Canonical Transforms; Springer: New York, NY, USA, 2016. [Google Scholar]
- Xu, T.Z.; Li, B.Z. Linear Canonical Transform and Its Applications; Science Press: Beijing, China, 2013. [Google Scholar]
- Shi, J.; Liu, X.; Zhang, N. Generalized convolution and product theorems associated with linear canonical transform. SIViP 2014, 8, 967–974. [Google Scholar] [CrossRef]
- Healy, J.J.; Sheridan, J.T. Sampling and discretization of the linear canonical transform. Signal Process. 2009, 89, 641–648. [Google Scholar] [CrossRef]
- Zhang, F.; Hou, S.P. The generalization of the Poisson sum formula associated with the linear canonical transform. J. Appl. Math. 2012, 2012, 102039. [Google Scholar] [CrossRef]
- Stern, A. Uncertainty principles in linear canonical transform domains and some of their implications in optics. J. Opt. Soc. Am. A 2008, 25, 647–665. [Google Scholar] [CrossRef]
- Shah, F.A.; Tantary, A.Y. Linear canonical Stockwell transform. J. Math. Anal. Appl. 2020, 484, 123673. [Google Scholar] [CrossRef]
- Shah, F.A.; Nisar, K.S.; Lone, W.Z.; Tantary, A.Y. Uncertainty principles for the quadratic-phase Fourier transforms. Math. Methods Appl. Sci. 2021, 44, 10416–10431. [Google Scholar] [CrossRef]
- Shah, F.A.; Tantary, A.Y. Linear canonical ripplet transform: Theory and localization operators. J. Pseudo-Differ. Oper. Appl. 2022, 13, 1–24. [Google Scholar] [CrossRef]
- Ghobber, S.; Mejjaoli, H. A new wavelet transform and its localization operators. Mathematics 2025, 13, 1771. [Google Scholar] [CrossRef]
- Mejjaoli, H.; Verma, S.K. Dunkl linear canonical wavelet transform and applications. Rend. Circ. Mat. Palermo II Ser. 2025. accepted. [Google Scholar]
- Ghobber, S.; Mejjaoli, H. Localization operators for the linear canonical Dunkl windowed transformation. Axioms 2025, 14, 262. [Google Scholar] [CrossRef]
- Ghobber, S.; Mejjaoli, H. Uncertainty Inequalities for the Linear Canonical Dunkl Transform. Mathematics 2025, 13, 2729. [Google Scholar] [CrossRef]
- Verma, S.K.; Umamaheswari, S. Localization operators associated to linear canonical Dunkl wavelet transform. J. Pseudo-Differ. Oper. Appl. 2025, 16, 1–27. [Google Scholar]
- Mejjaoli, H.; Verma, S.K.; Umamaheswari, S. Wavelet multipliers in the linear canonical Dunkl setting and applications. Asian-Eur. J. Math. 2025. [Google Scholar] [CrossRef]
- Verma, S.K.; Umamaheswari, S.; Mejjaoli, H. Real Paley-Wiener theorems for the linear canonical Dunkl transform. Ann. Funct. Anal. 2025. accepted. [Google Scholar]
- de Jeu, M.F.E. The Dunkl transform. Invent. Math. 1993, 113, 147–162. [Google Scholar] [CrossRef]
- Rösler, M.; Voit, M. Markov processes related with Dunkl operators. Adv. Appl. Math. 1998, 21, 575–643. [Google Scholar] [CrossRef]
- Trimèche, K. Paley-Wiener theorems for Dunkl transform and Dunkl translation operators. Integ. Transf. Special Funct. 2002, 13, 17–38. [Google Scholar] [CrossRef]
- Pathak, R.S. The Wavelet Transform; Atlantis Press/World Scientific: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Prasad, A.; Kumar, P. Composition of the continuous fractional wavelet transforms. Nat. Acad. Sci. Lett. 2016, 39, 115–120. [Google Scholar] [CrossRef]
- Juini, A. Continuous multiresolution analysis associated with the Dunkl operator on . Math. Sci. Res. J. 2003, 7, 79–98. [Google Scholar]
- Tyr, O.; Dades, A.; Daher, R. Wavelet packet analysis associated with the Weinstein operator on . J. Anal. 2023, 31, 31–56. [Google Scholar] [CrossRef]
Name | Symbol | Equations |
---|---|---|
Dunkl–Laplace operator | (10) | |
Dunkl kernel | (11) | |
Dunkl transform | (17) | |
Dunkl translation | (25) | |
Dunkl convolution | (36) | |
Linear canonical Dunkl transform (LCDT) | (41) | |
LCD kernel | (42) | |
Dunkl–Laplace operator | (43) | |
Generalized translation operator | (60) | |
Generalized convolution product | (69) | |
Admissible Linear canonical wavelet constant | (76) | |
Linear canonical Dunkl wavelet transform | (82) | |
DLC P-wavelet packet transform | (111) | |
DLC modified wavelet packet transform | (130) | |
DLC S-wavelet packet transform | (138) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghobber, S.; Mejjaoli, H. Two Versions of Dunkl Linear Canonical Wavelet Transforms and Applications. Mathematics 2025, 13, 3225. https://doi.org/10.3390/math13193225
Ghobber S, Mejjaoli H. Two Versions of Dunkl Linear Canonical Wavelet Transforms and Applications. Mathematics. 2025; 13(19):3225. https://doi.org/10.3390/math13193225
Chicago/Turabian StyleGhobber, Saifallah, and Hatem Mejjaoli. 2025. "Two Versions of Dunkl Linear Canonical Wavelet Transforms and Applications" Mathematics 13, no. 19: 3225. https://doi.org/10.3390/math13193225
APA StyleGhobber, S., & Mejjaoli, H. (2025). Two Versions of Dunkl Linear Canonical Wavelet Transforms and Applications. Mathematics, 13(19), 3225. https://doi.org/10.3390/math13193225