Global Existence, General Decay, and Blow Up of the Solution to the Coupled p-Biharmonic Equation of Hyperbolic Type with Degenerate Damping Terms
Abstract
1. Introduction
2. Preliminaries
3. Global Existence
4. Decay Result
5. Blow Up
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lazer, A.C.; McKenna, P.J. Large amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis. SIAM Rev. 1990, 32, 537–578. [Google Scholar] [CrossRef]
- McKenna, P.J.; Walter, W. Nonlinear oscillations in a suspension bridge. Arch. Rational Mech. Anal. 1987, 98, 167–177. [Google Scholar] [CrossRef]
- McKenna, P.J.; Walter, W. Travelling waves in a suspension bridge. SIAM J. Appl. Math. 1990, 50, 703–715. [Google Scholar] [CrossRef]
- Messaoudi, S.A. Global existence and nonexistence in a system of Petrovsky. J. Math. Anal. Appl. 2002, 265, 296–308. [Google Scholar] [CrossRef]
- Wu, S.T.; Tsai, L.Y. On global solutions and blow-up of solutions for a nonlinearly damped Petrovsky system. Taiwan. J. Math. 2009, 13, 545–558. [Google Scholar] [CrossRef]
- Chen, W.; Zhou, Y. Global nonexistence for a semilinear Petrovsky equation. Nonlinear Ana. 2009, 70, 3203–3208. [Google Scholar] [CrossRef]
- Li, G.; Sun, Y.; Liu, W. Global existence and blow up of solutions for a strongly damped Petrovsky system with nonlinear damping. Appl. Anal. 2012, 91, 575–586. [Google Scholar] [CrossRef]
- Guesmia, A. Energy Decay for a Damped Nonlinear Coupled System. J. Math. Anal. Appl. 1999, 239, 38–48. [Google Scholar] [CrossRef]
- Bahlil, M.; Feng, B. Global existence and energy decay of solutions to a coupled wave and petrovsky system with nonlinear dissipations and source terms. Mediterr. J. Math. 2020, 17, 60. [Google Scholar] [CrossRef]
- Payne, L.E.; Sattinger, D.H. Saddle points and instability of nonlinear hyperbolic equations. Israel J. Math. 1975, 22, 273–303. [Google Scholar] [CrossRef]
- Sattinger, D.H. On global solutions for nonlinear hyperbolic equations. Arch. Ration. Mech. Anal. 1968, 30, 148–172. [Google Scholar] [CrossRef]
- Saadaoui, M.; Bahlil, M.; Abdelli, M. On the existence and asymptotic behavior for a strongly damped nonlinear coupled Petrovsky-Wave system. Kragujev. J. Math. 2024, 48, 879–892. [Google Scholar] [CrossRef]
- Li, G.; Su, Y.; Liu, W. Global existence, uniform decay and blow-up solutions for a system of Petrosky equations. Nonlinear Anal. 2011, 74, 1523–1538. [Google Scholar] [CrossRef]
- Liu, W. Blow-Up of solutions for a system of petrovsky equations with an indirect linear damping. Z. Naturforsch. 2013, 68, 343–349. [Google Scholar] [CrossRef]
- Peyravi, A. Lower bounds for blow-up time for a system of semilinear hyperbolic Petrovsky equations. Acta Math. Sci. 2016, 36, 683–688. [Google Scholar] [CrossRef]
- Nhan, T.T. Classification of blow-up and global existence of solutions to a system of petrovsky equations. Electron. J. Appl. Math. 2023, 1, 29–58. [Google Scholar] [CrossRef]
- Ferreira, J.; Panni, W.S.; Messaoudi, S.A.; Pişkin, E.; Shahrouzi, M. Existence and Asymptotic Behavior of Beam-Equation Solutions with Strong Damping and p(x)-Biharmonic Operator. J. Math. Phys. Anal. Geom. 2022, 18, 488–513. [Google Scholar] [CrossRef]
- Butakın, G.; Pişkin, E. Existence and blow up of solutions for m(x)-Biharmonic equation with variable exponent sources. Filomat 2024, 38, 7871–7893. [Google Scholar] [CrossRef]
- Gheraibia, B.; Boumaza, N.; Imad, A. Global Existence, Stability and Blow up of Solutions for p-Biharmonic Hyperbolic Equation with Weak and Strong Damping Terms. J. Math. Phys. Anal. Geom. 2025, 21, 203–217. [Google Scholar] [CrossRef]
- Yu, F.; Wu, X.; Zhao, Y. Global existence and blow-up of solutions for a class of p-Biharmonic wave equations with damping terms and power sources. Math. Method. Appl. Sci. 2025, 48, 218–236. [Google Scholar] [CrossRef]
- Gheraibia, B.; Mirgani, S.M.; Boumaza, N.; Zennir, K.; Alodhaibi, S.S. Global Existence, General Decay, and Blow up of Solution for a p-Biharmonic Equation of Hyperbolic Type with Delay and Acoustic Boundary Conditions. Mathematics 2025, 13, 2104. [Google Scholar] [CrossRef]
- Adams, R.A.; Fournier, J.F. Sobolev Spaces; Academic Press: New York, NY, USA, 2003. [Google Scholar]
- Messaoudi, S.A.; Said-Houari, B. Global nonexistence of positive initial-energy solutions of a system of nonlinear viscoelastic wave equations with damping and source terms. J. Math. Anal. Appl. 2010, 365, 277–287. [Google Scholar] [CrossRef]
- Said-Houari, B. Global nonexistence of positive initial-energy solutions of a system of nonlinear wave equations with damping and source terms. Differ. Integral Equ. 2010, 23, 79–92. [Google Scholar] [CrossRef]
- Rammaha, M.A.; Sakuntasathien, S. Global existence and blow up of solutions to systems of nonlinear wave equations with degenerate damping and source terms. Nonlinear Anal. 2010, 72, 2658–2683. [Google Scholar] [CrossRef]
- Komornik, V. Exact Controllability and Stabilization: The Multiplier Method; Masson-John Wiley: Paris, France, 1994. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boumaza, N.; Gheraibia, B.; Zhang, H.; Hajjej, Z. Global Existence, General Decay, and Blow Up of the Solution to the Coupled p-Biharmonic Equation of Hyperbolic Type with Degenerate Damping Terms. Mathematics 2025, 13, 3152. https://doi.org/10.3390/math13193152
Boumaza N, Gheraibia B, Zhang H, Hajjej Z. Global Existence, General Decay, and Blow Up of the Solution to the Coupled p-Biharmonic Equation of Hyperbolic Type with Degenerate Damping Terms. Mathematics. 2025; 13(19):3152. https://doi.org/10.3390/math13193152
Chicago/Turabian StyleBoumaza, Nouri, Billel Gheraibia, Hongwei Zhang, and Zayd Hajjej. 2025. "Global Existence, General Decay, and Blow Up of the Solution to the Coupled p-Biharmonic Equation of Hyperbolic Type with Degenerate Damping Terms" Mathematics 13, no. 19: 3152. https://doi.org/10.3390/math13193152
APA StyleBoumaza, N., Gheraibia, B., Zhang, H., & Hajjej, Z. (2025). Global Existence, General Decay, and Blow Up of the Solution to the Coupled p-Biharmonic Equation of Hyperbolic Type with Degenerate Damping Terms. Mathematics, 13(19), 3152. https://doi.org/10.3390/math13193152